The pro-migratory and pro-invasive role of the procoagulant tissue factor in malignant gliomas

被引:12
作者
Duetzmann, Stephan [1 ]
Gessler, Florian
Harter, Patrick N. [2 ]
Gerlach, Ruediger [1 ]
Mittelbronn, Michel [2 ]
Seifert, Volker [1 ]
Koegel, Donat [1 ]
机构
[1] Goethe Univ Hosp Frankfurt, Dept Neurosurg, Frankfurt, Germany
[2] Goethe Univ Frankfurt, Edinger Inst, Frankfurt, Germany
关键词
brain tumor; blood coagulation; hypoxia; MAP kinase; cancer stem cells; tumor invasion; HYPOXIA-INDUCIBLE FACTORS; GROWTH-FACTOR RECEPTOR; HIGH-GRADE GLIOMA; FACTOR EXPRESSION; CELL-MIGRATION; MOLECULAR-MECHANISMS; PERIVASCULAR NICHE; TUMOR PROGRESSION; FACTOR VEGF; BRAIN;
D O I
10.4161/cam.4.4.12660
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
During the infiltration process, glioma cells are known to migrate along preexisting anatomical structures such as blood vessels, axonal fiber tracts and the subependymal space, thereby widely invading surrounding CNS tissue. This phenomenon represents a major obstacle for the clinical treatment of these tumors. Several extracellular key factors and intracellular signaling pathways have been previously linked to the highly aggressive, invasive phenotype observed in malignant gliomas. The glioblastoma (GBM), which is the most malignant form of these tumors, is histologically characterized by areas of tumor necroses and pseudopalisading cells, the latter likely representing tumor cells actively migrating away from the hypoxicischemic core of the tumor. It is believed that intravascular thromboses play a major role in the emergence of hypoxia and intratumoral necroses in GBMs. One of the most highly upregulated prothrombotic factor in malignant gliomas is tissue factor (TF), a 47 kDa type I transmembrane protein belonging to the cytokine receptor superfamily. In a recent study, we provided evidence that TF/FVIIa signaling via the protease-activated receptor 2 (PAR-2) promotes cell growth, migration and invasion of glioma cells. In this Commentary & View, we outline the key molecular players involved in migration and invasion of gliomas, highlight the potential role of TF for the pro-migratory and pro-invasive phenotype of these tumors and discuss the underlying mechanisms on the cellular level and in the tumor microenvironment.
引用
收藏
页码:515 / 522
页数:8
相关论文
共 87 条
[1]  
Acker T, 2004, CANC TREAT, V117, P219
[2]   Signaling of the tissue factor coagulation pathway in angiogenesis and cancer [J].
Belting, M ;
Ahamed, J ;
Ruf, W .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2005, 25 (08) :1545-1550
[3]   Signal transducer and activator of transcription-3: A molecular hub for signaling pathways in gliomas [J].
Brantley, Emily C. ;
Benveniste, Etty N. .
MOLECULAR CANCER RESEARCH, 2008, 6 (05) :675-684
[4]   Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma [J].
Brat, DJ ;
Van Meir, EG .
LABORATORY INVESTIGATION, 2004, 84 (04) :397-405
[5]   A perivascular niche for brain tumor stem cells [J].
Calabrese, Christopher ;
Poppleton, Helen ;
Kocak, Mehmet ;
Hogg, Twala L. ;
Fuller, Christine ;
Hamner, Blair ;
Oh, Eun Young ;
Gaber, M. Waleed ;
Finklestein, David ;
Allen, Meredith ;
Frank, Adrian ;
Bayazitov, Ildar T. ;
Zakharenko, Stanislav S. ;
Gajjar, Amar ;
Davidoff, Andrew ;
Gilbertson, Richard J. .
CANCER CELL, 2007, 11 (01) :69-82
[6]   The transcriptional network for mesenchymal transformation of brain tumours [J].
Carro, Maria Stella ;
Lim, Wei Keat ;
Alvarez, Mariano Javier ;
Bollo, Robert J. ;
Zhao, Xudong ;
Snyder, Evan Y. ;
Sulman, Erik P. ;
Anne, Sandrine L. ;
Doetsch, Fiona ;
Colman, Howard ;
Lasorella, Anna ;
Aldape, Ken ;
Califano, Andrea ;
Iavarone, Antonio .
NATURE, 2010, 463 (7279) :318-U68
[7]   Perivascular Nitric Oxide Activates Notch Signaling and Promotes Stem-like Character in PDGF-Induced Glioma Cells [J].
Charles, Nikki ;
Ozawa, Tatsuya ;
Squatrito, Massimo ;
Bleau, Anne-Marie ;
Brennan, Cameron W. ;
Hambardzumyan, Dolores ;
Holland, Eric C. .
CELL STEM CELL, 2010, 6 (02) :141-152
[8]  
Chen F, J MOL NEUROSCI, V40, P353
[9]   PI3K Signaling in Glioma-Animal Models and Therapeutic Challenges [J].
Cheng, Christine K. ;
Fan, Qi-Wen ;
Weiss, William A. .
BRAIN PATHOLOGY, 2009, 19 (01) :112-120
[10]   Diffuse glioma growth: a guerilla war [J].
Claes, An ;
Idema, Albert J. ;
Wesseling, Pieter .
ACTA NEUROPATHOLOGICA, 2007, 114 (05) :443-458