Cyclicity of some analytic maps

被引:3
|
作者
Mencinger, Matej [1 ,2 ]
Fercec, Brigita [3 ,4 ]
Oliveira, Regilene [5 ]
Pagon, Dusan [6 ]
机构
[1] Univ Maribor, Fac Civil Engn Transportat Engn & Architecture, Smetanova 17, SLO-2000 Maribor, Slovenia
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Maribor, Fac Energy Technol, Hocevarjev Trg 1, Krshko 8270, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, Krekova 2, SI-2000 Maribor, Slovenia
[5] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[6] Univ Maribor, Fac Nat Sci & Math, Koroska 160, SLO-2000 Maribor, Slovenia
关键词
Discrete dynamical systems; Polynomial maps; Periodic points; Limit cycles; Cyclicity; HILBERTS 16TH PROBLEM; CUBIC SYSTEMS; BIFURCATIONS; ALGEBRA;
D O I
10.1016/j.amc.2016.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe an approach to estimate the cyclicity of centers in maps given by f(x) = -x - Sigma(infinity)(k=1) a(k)x(k+1). The main motivation for this problem originates from the study of cyclicity of planar systems of ODEs. We also consider the bifurcation of limit cycles from each component of the center variety of some particular cases of maps f(x) = -x - E(k=1)(infinity)a(k)x(k+1) arising from algebraic equations of the form x+y+h.o.t. = 0 where higher order terms up to degree four are present. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 125
页数:12
相关论文
共 50 条
  • [1] The center and cyclicity problems for some analytic maps
    Mencinger, Matej
    Fercec, Brigita
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 306 : 73 - 85
  • [2] CYCLICITY OF SOME LIENARD SYSTEMS
    Li, Na
    Han, Maoan
    Romanovski, Valery G.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (06) : 2127 - 2150
  • [3] Cyclicity of some symmetric nilpotent centers
    Garcia, Isaac A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (06) : 5356 - 5377
  • [4] Periodic points of some algebraic maps
    Romanovski, Valery G.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 27 : 156 - 162
  • [5] Center cyclicity for some nilpotent singularities including the Z2-equivariant class
    Garcia, Isaac A.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (07)
  • [6] Cyclicity in Reproducing Kernel Hilbert Spaces of Analytic Functions
    Emmanuel Fricain
    Javad Mashreghi
    Daniel Seco
    Computational Methods and Function Theory, 2014, 14 : 665 - 680
  • [7] Cyclicity in Reproducing Kernel Hilbert Spaces of Analytic Functions
    Fricain, Emmanuel
    Mashreghi, Javad
    Seco, Daniel
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (04) : 665 - 680
  • [8] Bifurcations of Periodic Points of Some Algebraic Maps
    Valery G. Romanovski
    Mathematics in Computer Science, 2007, 1 (2) : 253 - 265
  • [9] Bifurcations of Periodic Points of Some Algebraic Maps
    Romanovski, Valery G.
    MATHEMATICS IN COMPUTER SCIENCE, 2007, 1 (02) : 253 - 265
  • [10] On integrability and cyclicity of cubic systems
    Dukaric, Masa
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (55) : 1 - 19