Antiferromagnetic Spin-S Chains with Exactly Dimerized Ground States

被引:42
作者
Michaud, Frederic [1 ]
Vernay, Francois [2 ,3 ]
Manmana, Salvatore R. [4 ,5 ,6 ]
Mila, Frederic [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland
[2] Lab PROMES UPR 8521, F-66860 Perpignan, France
[3] UPVD, F-66860 Perpignan, France
[4] Univ Colorado, JILA, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[6] NIST, JILA, Boulder, CO 80309 USA
关键词
NEAREST-NEIGHBOR INTERACTION; ISOTROPIC HEISENBERG CHAIN; ARBITRARY SPINS; LINEAR CHAIN; QUANTUM; MODEL; EXCITATIONS; TRANSITION; LATTICE; S=1;
D O I
10.1103/PhysRevLett.108.127202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that spin S Heisenberg spin chains with an additional three-body interaction of the form (Si-1 center dot S-i)(S-i center dot S-i (+) (1)) + H.c. possess fully dimerized ground states if the ratio of the three-body interaction to the bilinear one is equal to 1/[4S(S + 1) - 2]. This result generalizes the Majumdar-Ghosh point of the J(1) - J(2) chain, to which the present model reduces for S = 1/2. For S = 1, we use the density matrix renormalization group method to show that the transition between the Haldane and the dimerized phases is continuous with a central charge c = 3/2. Finally, we show that such a three-body interaction appears naturally in a strong-coupling expansion of the Hubbard model, and we discuss the consequences for the dimerization of actual antiferromagnetic chains.
引用
收藏
页数:5
相关论文
共 50 条
[31]   Gutzwiller approach for elementary excitations in S=1 antiferromagnetic chains [J].
Liu, Zheng-Xin ;
Zhou, Yi ;
Ng, Tai-Kai .
NEW JOURNAL OF PHYSICS, 2014, 16
[32]   Topological photonic states in one-dimensional dimerized ultracold atomic chains [J].
Wang, B. X. ;
Zhao, C. Y. .
PHYSICAL REVIEW A, 2018, 98 (02)
[33]   Residual entropy of spin-s triangular Ising antiferromagnet [J].
Zukovic, Milan .
EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (06)
[34]   Fractional and composite excitations of antiferromagnetic quantum spin trimer chains [J].
Cheng, Jun-Qing ;
Li, Jun ;
Xiong, Zijian ;
Wu, Han-Qing ;
Sandvik, Anders W. ;
Yao, Dao-Xin .
NPJ QUANTUM MATERIALS, 2022, 7 (01)
[35]   Exact spectrum of the spin-s Heisenberg chain with generic non-diagonal boundaries [J].
Cao, Junpeng ;
Cui, Shuai ;
Yang, Wen-Li ;
Shi, Kangjie ;
Wang, Yupeng .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02) :1-25
[36]   Exact solutions of few-magnon problems in the spin-S periodic XXZ chain [J].
Wu, Ning ;
Katsura, Hosho ;
Li, Sheng-Wen ;
Cai, Xiaoming ;
Guan, Xi-Wen .
PHYSICAL REVIEW B, 2022, 105 (06)
[37]   Pade approximations for the magnetic susceptibilities of Heisenberg antiferromagnetic spin chains for various spin values [J].
Law, J. M. ;
Benner, H. ;
Kremer, R. K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (06)
[38]   Topological Phases of Parafermions: A Model with Exactly Solvable Ground States [J].
Iemini, Fernando ;
Mora, Christophe ;
Mazza, Leonardo .
PHYSICAL REVIEW LETTERS, 2017, 118 (17)
[39]   Hierarchy of exactly solvable spin-1/2 chains with so(N)1 critical points [J].
Lahtinen, Ville ;
Mansson, Teresia ;
Ardonne, Eddy .
PHYSICAL REVIEW B, 2014, 89 (01)
[40]   Non-Abelian statistics and a hierarchy of fractional spin liquids in spin-S antiferromagnets [J].
Scharfenberger, Burkhard ;
Thomale, Ronny ;
Greiter, Martin .
PHYSICAL REVIEW B, 2011, 84 (14)