Single-electron thermal devices coupled to a mesoscopic gate

被引:43
|
作者
Sanchez, Rafael [1 ]
Thierschmann, Holger [2 ]
Molenkamp, Laurens W. [3 ]
机构
[1] Univ Carlos III Madrid, Inst Gregorio Millan, E-28911 Madrid, Spain
[2] Delft Univ Technol, Fac Appl Sci, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] Univ Wurzburg, Phys Inst, Expt Phys 3, D-97074 Wurzburg, Germany
来源
NEW JOURNAL OF PHYSICS | 2017年 / 19卷
基金
欧洲研究理事会;
关键词
quantum dot; heat currents; thermal devices; single-electron tunneling; COULOMB-BLOCKADE OSCILLATIONS; HEAT-CONDUCTION; QUANTUM-DOT; ENERGY; THERMOPOWER; REFRIGERATION;
D O I
10.1088/1367-2630/aa8b94
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We theoretically investigate the propagation of heat currents in a three-terminal quantum dot engine. Electron-electron interactions introduce state-dependent processes which can be resolved by energy-dependent tunneling rates. We identify the relevant transitions which define the operation of the system as a thermal transistor or a thermal diode. In the former case, thermal-induced charge fluctuations in the gate dot modify the thermal currents in the conductor with suppressed heat injection, resulting in huge amplification factors and the possible gating with arbitrarily low energy cost. In the latter case, enhanced correlations of the state-selective tunneling transitions redistribute heat flows giving high rectification coefficients and the unexpected cooling of one conductor terminal by heating the other one. We propose quantum dot arrays as a possible way to achieve the extreme tunneling asymmetries required for the different operations.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Surface-gate-defined single-electron transistor in a MoS2 bilayer
    Javaid, M.
    Drumm, Daniel W.
    Russo, Salvy P.
    Greentree, Andrew D.
    NANOTECHNOLOGY, 2017, 28 (12)
  • [22] Fabrication and Characteristics of Self-Aligned Dual-Gate Single-Electron Transistors
    Lee, Dong Seup
    Kang, Sangwoo
    Kang, Kwon-Chil
    Lee, Joung-Eob
    Lee, Jung Hoon
    Song, Kwan-Jae
    Kim, Dong Myong
    Lee, Jong Duk
    Park, Byung-Gook
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2009, 8 (04) : 492 - 497
  • [23] Single-ZnO-Nanobelt-Based Single-Electron Transistors
    Ji Xiao-Fan
    Xu Zheng
    Cao Shuo
    Qiu Kang-Sheng
    Tang Jing
    Zhang Xi-Tian
    Xu Xiu-Lai
    CHINESE PHYSICS LETTERS, 2014, 31 (06)
  • [24] A stochastic associative memory using single-electron tunneling devices
    Saen, M
    Morie, T
    Nagata, M
    Iwata, A
    IEICE TRANSACTIONS ON ELECTRONICS, 1998, E81C (01): : 30 - 35
  • [25] Transport properties of a resistively-coupled single-electron transistor
    Wakaya, F
    Kitamura, K
    Iwabuchi, S
    Gamo, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1999, 38 (4B): : 2470 - 2472
  • [26] Fabrication and Electrical Characterization of Fully CMOS-Compatible Si Single-Electron Devices
    Koppinen, P. J.
    Stewart, M. D., Jr.
    Zimmerman, Neil M.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (01) : 78 - 83
  • [27] Tunable parity effect in coupled superconducting single-electron transistors
    Katsumoto, S
    Kimura, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (12) : 3704 - 3707
  • [28] A comparative study of single-electron memories
    Wasshuber, C
    Kosina, H
    Selberherr, S
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (11) : 2365 - 2371
  • [29] The Kondo effect in a single-electron transistor
    Goldhaber-Gordon, D
    Göres, J
    Shtrikman, H
    Mahalu, D
    Meirav, U
    Kastner, MA
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 84 (1-2): : 17 - 21
  • [30] Single-electron control of Wigner crystallization
    Bonitz, M
    Golubnychiy, V
    Filinov, AV
    Lozovik, YE
    MICROELECTRONIC ENGINEERING, 2002, 63 (1-3) : 141 - 145