Subtle change in the work hardening behavior of fcc materials processed by selective laser melting

被引:13
作者
Sokkalingam, R. [1 ]
Sivaprasad, K. [1 ]
Singh, N. [2 ]
Muthupandi, V [1 ]
Ma, P. [3 ]
Jia, Y. D. [4 ]
Prashanth, K. G. [2 ,5 ,6 ]
机构
[1] Natl Inst Technol, Dept Met & Mat Engn, Adv Mat Proc Lab, Tiruchirappalli 620015, Tamil Nadu, India
[2] Tallinn Univ Technol, Dept Mech & Ind Engn, Ehitajate Tee 5, EE-19086 Tallinn, Estonia
[3] Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China
[4] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[5] Austrian Acad Sci, Erich Schmid Inst Mat Sci, Jahnstr 12, A-8700 Leoben, Austria
[6] Vellore Inst Technol, Sch Mech Engn, CBCMT, Vellore 632014, Tamil Nadu, India
关键词
Selective laser melting; High entropy alloy; Work hardening rate; Mechanical strength; HIGH-ENTROPY ALLOY; 316L STAINLESS-STEEL; BULK METALLIC-GLASS; MECHANICAL-PROPERTIES; HIGH-STRENGTH; MICROSTRUCTURE; POWDER; DUCTILITY; COMPOSITES; IMPACT;
D O I
10.1007/s40964-022-00301-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Single face centered cubic (fcc) AISI (American Iron and Steel Institute)-316L stainless steel and CoCrFeMnNi-high entropy alloy (HEA) were successfully fabricated using selective laser melting (SLM). Both the SLM processed alloys reveal the presence of hierarchical microstructure (presence of columnar grains, and cellular substructures). Also, the microhardness and tensile properties of AISI 316L stainless steel and CoCrFeMnNi-HEA are similar, where the microhardness varies between 240 and 270 HV0.5 and the yield strength and ultimate tensile strength are observed to be around similar to 500 MPa and similar to 600 MPa respectively. The aim of this research is to study the influence of rapid work hardening vs steady state working hardening in two materials of same crystal structure. Accordingly, CoCrFeMnNi-HEA exhibits higher work hardening rate at lower strains (<5% true strain); however, it lacks its work hardening stability at higher strain. While in case of AISI 316L stainless steel, even though, it shows lower work hardening at initial strain, it withstands at higher strain (high ductility) due to stable work hardening ability by twin mediated plasticity during plastic deformation.
引用
收藏
页码:453 / 461
页数:9
相关论文
共 63 条
[1]   Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting [J].
Attar, H. ;
Loeber, L. ;
Funk, A. ;
Calin, M. ;
Zhang, L. C. ;
Prashanth, K. G. ;
Scudino, S. ;
Zhang, Y. S. ;
Eckert, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 625 :350-356
[2]   The use of high-entropy alloys in additive manufacturing [J].
Brif, Yevgeni ;
Thomas, Meurig ;
Todd, Iain .
SCRIPTA MATERIALIA, 2015, 99 :93-96
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[5]   Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder JettingSelection Guidelines [J].
Gokuldoss, Prashanth Konda ;
Kolla, Sri ;
Eckert, Juergen .
MATERIALS, 2017, 10 (06)
[6]   Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys [J].
Gorsse, Stephane ;
Hutchinson, Christopher ;
Goune, Mohamed ;
Banerjee, Rajarshi .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2017, 18 (01) :584-610
[7]   Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N,Si) high entropy alloy [J].
Guo, Lin ;
Gu, Ji ;
Gan, Bin ;
Ni, Song ;
Bi, Zhongnan ;
Wang, Zhangwei ;
Song, Min .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 865
[8]   Additive manufacturing of steels: a review of achievements and challenges [J].
Haghdadi, Nima ;
Laleh, Majid ;
Moyle, Maxwell ;
Primig, Sophie .
JOURNAL OF MATERIALS SCIENCE, 2021, 56 (01) :64-107
[9]   Additive manufacturing of metals [J].
Herzog, Dirk ;
Seyda, Vanessa ;
Wycisk, Eric ;
Emmelmann, Claus .
ACTA MATERIALIA, 2016, 117 :371-392
[10]   Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study [J].
Jung, Hyo Yun ;
Choi, Su Ji ;
Prashanth, Konda G. ;
Stoica, Mihai ;
Scudino, Sergio ;
Yi, Seonghoon ;
Kuehn, Uta ;
Kim, Do Hyang ;
Kim, Ki Buem ;
Eckert, Juergen .
MATERIALS & DESIGN, 2015, 86 :703-708