Research on target tracking algorithm based on mean shift with adaptive bandwidth

被引:1
作者
Han, Ming [1 ,2 ]
Wang, Jingqin [2 ]
Wang, Jingtao [1 ]
Meng, Junying [1 ]
Cheng, Ying [3 ]
机构
[1] Shijiazhuang Univ, Sch Comp Sci & Engn, Shijiazhuang 050035, Hebei, Peoples R China
[2] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
[3] Stat Informat Ctr Hebei Prov Hlth Commiss, Shijiazhuang, Hebei, Peoples R China
关键词
Anisotropic kernel function; level set; mean shift; target tracking; adaptive bandwidth;
D O I
10.3233/JCM-215884
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The traditional mean shift algorithm used fixed kernels or symmetric kernel function, which will cause the target tracking lost or failure. The target tracking algorithm based on mean shift with adaptive bandwidth was proposed. Firstly, the signed distance constraint function was introduced to produce the anisotropic kernel function based on signed distance kernel function. This anisotropic kernel function satisfies that the value of the region function outside the target is zero, which provides accurate tracking window for the target tracking. Secondly, calculate the mean shift window center of anisotropic kernel function template, the theory basis is the sum of vector weights from the sample point in the tracking window to the center point is zero. Thirdly, anisotropic kernel function templates adaptive update implementation by similarity threshold to limit the change of the template between two sequential pictures, so as to realize real-time precise tracking. Finally, the contrast experimental results show that our algorithm has good accuracy and high real time.
引用
收藏
页码:661 / 675
页数:15
相关论文
共 17 条
[1]  
Buyval A, 2018, IEEE INT CONF ROBOT, P2064
[2]   Likelihood-Field-Model-Based Dynamic Vehicle Detection and Tracking for Self-Driving [J].
Chen, Tongtong ;
Wang, Ruili ;
Dai, Bin ;
Liu, Daxue ;
Song, Jinze .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (11) :3142-3158
[3]   VisDrone-SOT2019: The Vision Meets Drone Single Object Tracking Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Zheng, Jiayu ;
Peng, Tao ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Han, Bo ;
Zhang, Chunhui ;
Liu, Guizhong ;
Wu, Han ;
Wen, Hao ;
Wang, Haoran ;
Fan, Jiaqing ;
Chen, Jie ;
Gao, Jie ;
Zhang, Jie ;
Zhou, Jinghao ;
Zhou, Jinliu ;
Wang, Jinwang ;
Wan, Jiuqing ;
Kittler, Josef ;
Zhang, Kaihua ;
Huang, Kaiqi ;
Yang, Kang ;
Zhang, Kangkai ;
Huang, Lianghua ;
Zhou, Lijun ;
Shi, Lingling ;
Ding, Lu ;
Wang, Ning ;
Wang, Peng ;
Hu, Qintao ;
Laganiere, Robert ;
Ma, Ruiyan ;
Zhang, Ruohan ;
Zou, Shanrong ;
Zhao, Shengwei ;
Li, Shengyang ;
Zhu, Shengyin ;
Li, Shikun ;
Ge, Shiming ;
Xuan, Shiyu ;
Xu, Tianyang .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :199-212
[4]  
Guangyu Y, 2019, J SHANDONG U SCI TEC, V38, P81
[5]   The Sixth Visual Object Tracking VOT2018 Challenge Results [J].
Kristan, Matej ;
Leonardis, Ales ;
Matas, Jiri ;
Felsberg, Michael ;
Pflugfelder, Roman ;
Zajc, Luka Cehovin ;
Vojir, Tomas ;
Bhat, Goutam ;
Lukezic, Alan ;
Eldesokey, Abdelrahman ;
Fernandez, Gustavo ;
Garcia-Martin, Alvaro ;
Iglesias-Arias, Alvaro ;
Alatan, A. Aydin ;
Gonzalez-Garcia, Abel ;
Petrosino, Alfredo ;
Memarmoghadam, Alireza ;
Vedaldi, Andrea ;
Muhic, Andrej ;
He, Anfeng ;
Smeulders, Arnold ;
Perera, Asanka G. ;
Li, Bo ;
Chen, Boyu ;
Kim, Changick ;
Xu, Changsheng ;
Xiong, Changzhen ;
Tian, Cheng ;
Luo, Chong ;
Sun, Chong ;
Hao, Cong ;
Kim, Daijin ;
Mishra, Deepak ;
Chen, Deming ;
Wang, Dong ;
Wee, Dongyoon ;
Gavves, Efstratios ;
Gundogdu, Erhan ;
Velasco-Salido, Erik ;
Khan, Fahad Shahbaz ;
Yang, Fan ;
Zhao, Fei ;
Li, Feng ;
Battistone, Francesco ;
De Ath, George ;
Subrahmanyam, Gorthi R. K. S. ;
Bastos, Guilherme ;
Ling, Haibin ;
Galoogahi, Hamed Kiani ;
Lee, Hankyeol .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 :3-53
[6]   High Performance Visual Tracking with Siamese Region Proposal Network [J].
Li, Bo ;
Yan, Junjie ;
Wu, Wei ;
Zhu, Zheng ;
Hu, Xiaolin .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8971-8980
[7]  
Liu JM, 2012, J COMPUTATIONAL INFO, V8, P10081
[8]   A novel fuzzy clustering algorithm by minimizing global and spatially constrained likelihood-based local entropies for noisy 3D brain MR image segmentation [J].
Mahata, Nabanita ;
Sing, Jamuna Kanta .
APPLIED SOFT COMPUTING, 2020, 90
[9]  
Meng Y, 2019, ACTA AUTOMATICA SINI, V45, P1244
[10]  
Ming H, 2021, INT J PATTERN RECOGN, V35