Vortex motion on surfaces with constant curvature

被引:69
作者
Kimura, Y
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1999年 / 455卷 / 1981期
关键词
vortex motion; hyperbolic plane; geodesic; sphere; Hamiltonian; Laplacian;
D O I
10.1098/rspa.1999.0311
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vortex motion on two-dimensional Riemannian surfaces with constant curvature is formulated. By way of the stereographic projection, the relation and difference between the vortex motion on a sphere (S-2) and on a hyperbolic plane (H-2) can be clearly analysed. The Hamiltonian formalism is presented for the motion of point vortices on S-2 and H-2. The set of first integrals for each Hamiltonian shows a corresponding algebraic property in terms of the Poisson bracket defined, respectively, for S-2 and H-2. As an example of analytic solutions, the motion of a vortex pair (dipole) is considered. It is shown that a dipole draws a geodesic curve as its trajectory on S-2 and H-2.
引用
收藏
页码:245 / 259
页数:15
相关论文
共 17 条
[1]  
[Anonymous], 1963, Differential Forms with applications to the Physical Sciences
[2]  
[Anonymous], IZV ATMOS OCEAN PHYS
[3]  
[Anonymous], 1885, CRELLE J
[4]   MOTION OF 3 VORTICES [J].
AREF, H .
PHYSICS OF FLUIDS, 1979, 22 (03) :393-400
[5]   INTEGRABLE AND CHAOTIC MOTIONS OF 4-VORTICES .1. THE CASE OF IDENTICAL VORTICES [J].
AREF, H ;
POMPHREY, N .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 380 (1779) :359-387
[6]  
ARNOLD VL, 1981, MATH THEORY CLASSICA
[7]  
COURANT R, 1989, METHODS MATH PHYS, V1, pCH5
[8]   STABILITY OF STREETS OF VORTICES ON SURFACES OF REVOLUTION WITH A REFLECTION SYMMETRY [J].
HALLY, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (01) :211-217
[9]   VORTEX MOTION ON A SPHERE [J].
KIMURA, Y ;
OKAMOTO, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (12) :4203-4206
[10]   SIMILARITY SOLUTION OF TWO-DIMENSIONAL POINT VORTICES [J].
KIMURA, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (06) :2024-2030