Laser Micromachining of Metals with Ultra-Short Pulses: Factors Limiting the Scale-Up Process

被引:45
作者
Jaeggi, Beat [1 ]
Remund, Stefan [1 ]
Streubel, Rene [2 ,3 ]
Goekce, Bilal [2 ,3 ]
Barcikowski, Stefan [2 ,3 ]
Neuenschwander, Beat [1 ]
机构
[1] Bern Univ Appl Sci, Inst Appl Laser Photon & Surface Technol ALPS, Pestalozzistr 20, CH-3400 Burgdorf, Switzerland
[2] Univ Duisburg Essen, Tech Chem 1, Univ Str 7, D-45141 Essen, Germany
[3] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Univ Str 7, D-45141 Essen, Germany
来源
JOURNAL OF LASER MICRO NANOENGINEERING | 2017年 / 12卷 / 03期
关键词
ultra-short laser pulses; micromachining; scale-up and throughput; heat accumulation; plasma-shielding; particle shielding; HIGH-REPETITION-RATE; REMOVAL RATE; HIGH-POWER; ABLATION; FEMTOSECOND; DEPENDENCE; PICOSECOND; HEAT;
D O I
10.2961/jlmn.2017.03.0016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Especially for metals it was shown that the material removal process with ultra-short laser pulses shows an optimum point with highest efficiency i.e. with maximum specific removal rate. A scale-up process should therefore be realized by keeping the applied fluence near this optimum value i.e. by linearly increasing the repetition rate with the average power. In this paper we show that this scale-up is affected by two factors, the heat accumulation and by shielding effects. The latter leads to a significant reduction of the specific removal rate which becomes significant in the case of copper or brass when the repetition rate is increased into the multi-MHz range. In contrast shielding effects are much less pronounced for stainless steel (1.4301) but the surface quality is strongly affected by heat accumulation. However, we show that removal rates in the range of 40 mm(3)/min are achieved for all studied metals with average laser powers above 300 W.
引用
收藏
页码:267 / 273
页数:7
相关论文
共 20 条
[1]   Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers [J].
Ancona, A. ;
Doering, S. ;
Jauregui, C. ;
Roeser, F. ;
Limpert, J. ;
Nolte, S. ;
Tuennermann, A. .
OPTICS LETTERS, 2009, 34 (21) :3304-3306
[2]  
[Anonymous], [No title captured]
[3]   Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel [J].
Armbruster, Oskar ;
Naghilou, Aida ;
Kitzler, Markus ;
Kautek, Wolfgang .
APPLIED SURFACE SCIENCE, 2017, 396 :1736-1740
[4]   Residual Heat in Ultra-Short Pulsed Laser Ablation of Metals [J].
Bauer, Franziska ;
Michalowski, Andreas ;
Nolte, Stefan .
JOURNAL OF LASER MICRO NANOENGINEERING, 2015, 10 (03) :325-328
[5]   Heat accumulation in ultra-short pulsed scanning laser ablation of metals [J].
Bauer, Franziska ;
Michalowski, Andreas ;
Kiedrowski, Thomas ;
Nolte, Stefan .
OPTICS EXPRESS, 2015, 23 (02) :1035-1043
[6]  
Chichkov BN, 1996, APPL PHYS A-MATER, V63, P109, DOI 10.1007/BF01567637
[7]   High Throughput and High Precision Laser Micromachining with ps-Pulses in Synchronized Mode with a fast Polygon Line Scanner [J].
Jaeggi, B. ;
Neuenschwander, B. ;
Zimmermann, M. ;
Penning, L. ;
deLoor, R. ;
Weingarten, K. ;
Oehler, A. .
LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING (LAMOM) XIX, 2014, 8967
[8]   Ultra high precision surface structuring by synchronizing a galvo scanner with an ultra short pulsed laser system in MOPA arrangement [J].
Jaeggi, B. ;
Neuenschwander, B. ;
Hunziker, U. ;
Zuercher, J. ;
Meier, T. ;
Zimmermann, M. ;
Selbmann, K. H. ;
Hennig, G. .
LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING (LAMOM) XVII, 2012, 8243
[9]   Plasma evolution during metal ablation with ultrashort laser pulses [J].
König, J ;
Nolte, S ;
Tünnermann, A .
OPTICS EXPRESS, 2005, 13 (26) :10597-10607
[10]   Increasing the Specific Removal Rate for Ultra Short Pulsed Laser-Micromachining by Using Pulse Bursts [J].
Kramer, Torsten ;
Zhang, Yiming ;
Remund, Stefan ;
Jaeggi, Beat ;
Michalowski, Andreas ;
Grad, Lisa ;
Neuenschwander, Beat .
JOURNAL OF LASER MICRO NANOENGINEERING, 2017, 12 (02) :107-114