Molecular cloning and expression analysis of an HINT1 homologue from maize (Zea mays L.)

被引:8
|
作者
Wu, Liuji [1 ]
Wang, Xintao [1 ]
Wu, Liancheng [1 ]
Wang, Pingan [1 ]
Chen, Yanhui [1 ]
机构
[1] Henan Agr Univ, Coll Agron, Zhengzhou 450002, Peoples R China
基金
中国博士后科学基金;
关键词
Histidine triad nucleotide binding protein; Immune response; Maize; Molecular cloning; RT-PCR expression analysis; HISTIDINE TRIAD PROTEINS; GENE; APRATAXIN; IMPACT; ATAXIA; KIN28; MICE;
D O I
10.1007/s11105-011-0296-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Histidine triad nucleotide binding protein (HINT1) belongs to a histidine triad (HIT) superfamily, which contains a highly conserved His-X-His-X-His-XX motif (X is a hydrophobic amino acid) and plays an important role in many biological processes. In this study, we have isolated the full-length cDNA of an HINT1 homologue from maize (Zea mays L.), designated as Zm-HINT1. The full-length cDNA of Zm-HINT1 consists of 729 bp with an ORF encoding a 138-amino acid protein. The deduced amino acid sequence of Zm-HINT1 shows high sequence homology to the mammalian HINT1 and contains conserved domains including the HIT motif, helical regions and beta-strands, which are the characteristics of HINT1 proteins. The phylogenetic analysis has revealed that Zm-HINT1 is branched along with Caenorhabditis elegans HINT1. RT-PCR analysis has revealed that Zm-HINT1 is ubiquitously expressed in maize tissues but not in the pericarp, thus suggesting that Zm-HINT1 may not be related to the production of fibrin. Furthermore, expression levels of Zm-HINT1 have increased rapidly following treatment with salicylic acid. Taken together, these results indicate that Zm-HINT1 is a mammalian HINT1 homologue and may be involved in the immune response of maize.
引用
收藏
页码:1006 / 1012
页数:7
相关论文
共 50 条
  • [41] Genetic analysis of resistance to nematodes in inbred maize (Zea mays L.) and maize hybrids
    Kagoda, Frank
    Derera, John
    Tongoona, Pangirayi
    Coyne, Daniel L.
    Lorenzen, J.
    EUPHYTICA, 2011, 182 (03) : 377 - 393
  • [42] Quantification of transgene expression in maize (Zea mays L.) throughout the vegetation period
    Bako, A.
    Gell, G.
    Balazs, E.
    PLANT BREEDING, 2011, 130 (01) : 41 - 45
  • [43] Genetic analysis of resistance to nematodes in inbred maize (Zea mays L.) and maize hybrids
    Frank Kagoda
    John Derera
    Pangirayi Tongoona
    Daniel L. Coyne
    J. Lorenzen
    Euphytica, 2011, 182 : 377 - 393
  • [44] Cloning and Characterization of a Putative TAC1 Ortholog Associated with Leaf Angle in Maize (Zea mays L.)
    Ku, Lixia
    Wei, Xiaomin
    Zhang, Shaofang
    Zhang, Jun
    Guo, Shulei
    Chen, Yanhui
    PLOS ONE, 2011, 6 (06):
  • [45] Callus induction from maize (Zea mays L.) mature embryos
    Gao, Xiudong
    Jin, Hua
    Shin, Young-Boum
    Hong, Soon-Kwan
    JOURNAL OF BIOTECHNOLOGY, 2008, 136 : S169 - S169
  • [46] USING MAIZE (ZEA MAYS L.) AS A SUGAR CROP
    Below, F. E.
    Vincent, M. L.
    Moose, S. P.
    POLJOPRIVREDA, 2008, 14 (01):
  • [47] Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1
    Yang, DE
    Zhang, CL
    Zhang, DS
    Jin, DM
    Weng, ML
    Chen, SJ
    Nguyen, H
    Wang, B
    THEORETICAL AND APPLIED GENETICS, 2004, 108 (04) : 706 - 711
  • [48] Maize cobs and cultures: history of Zea mays L.
    Hammond, Norman
    ANTIQUITY, 2010, 84 (326) : 1213 - 1214
  • [49] Characterization of maize (Zea mays L.) germplasm of Angola
    Bige, T.
    Lorenzoni, C.
    MAYDICA, 2007, 52 (02): : 135 - 144
  • [50] Artificial chromosome formation in maize (Zea mays L.)
    Ananiev, Evgueni V.
    Wu, Chengcang
    Chamberlin, Mark A.
    Svitashev, Sergei
    Schwartz, Chris
    Gordon-Kamm, William
    Tingey, Scott
    CHROMOSOMA, 2009, 118 (02) : 157 - 177