Molecular cloning and expression analysis of an HINT1 homologue from maize (Zea mays L.)

被引:8
|
作者
Wu, Liuji [1 ]
Wang, Xintao [1 ]
Wu, Liancheng [1 ]
Wang, Pingan [1 ]
Chen, Yanhui [1 ]
机构
[1] Henan Agr Univ, Coll Agron, Zhengzhou 450002, Peoples R China
基金
中国博士后科学基金;
关键词
Histidine triad nucleotide binding protein; Immune response; Maize; Molecular cloning; RT-PCR expression analysis; HISTIDINE TRIAD PROTEINS; GENE; APRATAXIN; IMPACT; ATAXIA; KIN28; MICE;
D O I
10.1007/s11105-011-0296-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Histidine triad nucleotide binding protein (HINT1) belongs to a histidine triad (HIT) superfamily, which contains a highly conserved His-X-His-X-His-XX motif (X is a hydrophobic amino acid) and plays an important role in many biological processes. In this study, we have isolated the full-length cDNA of an HINT1 homologue from maize (Zea mays L.), designated as Zm-HINT1. The full-length cDNA of Zm-HINT1 consists of 729 bp with an ORF encoding a 138-amino acid protein. The deduced amino acid sequence of Zm-HINT1 shows high sequence homology to the mammalian HINT1 and contains conserved domains including the HIT motif, helical regions and beta-strands, which are the characteristics of HINT1 proteins. The phylogenetic analysis has revealed that Zm-HINT1 is branched along with Caenorhabditis elegans HINT1. RT-PCR analysis has revealed that Zm-HINT1 is ubiquitously expressed in maize tissues but not in the pericarp, thus suggesting that Zm-HINT1 may not be related to the production of fibrin. Furthermore, expression levels of Zm-HINT1 have increased rapidly following treatment with salicylic acid. Taken together, these results indicate that Zm-HINT1 is a mammalian HINT1 homologue and may be involved in the immune response of maize.
引用
收藏
页码:1006 / 1012
页数:7
相关论文
共 50 条
  • [31] EFFICIENCY AND SELECTIVITY OF HERBICIDES IN MAIZE (ZEA MAYS L.)
    Markovic, Mladen
    Protic, Rade
    Protic, Nada
    ROMANIAN AGRICULTURAL RESEARCH, 2008, 25 : 77 - 82
  • [32] The genetics of virus resistance in maize (Zea mays L.)
    Redinbaugh, MG
    Jones, MW
    Gingery, RE
    MAYDICA, 2004, 49 (03): : 183 - 190
  • [33] Microsatellite Fingerprinting of Maize Cultivars (Zea mays L.)
    Kaur, H.
    Sarao, N. K.
    Vikal, Y.
    Singh, K.
    Sharma, R. C.
    CEREAL RESEARCH COMMUNICATIONS, 2011, 39 (04) : 507 - 514
  • [34] The modulation of light quality on carotenoids in maize (Zea mays L.) sprouts
    Xiang, Nan
    Zhao, Yihan
    Wang, Siyun
    Guo, Xinbo
    FOOD CHEMISTRY: MOLECULAR SCIENCES, 2022, 5
  • [35] Combined analysis of genome-wide expression profiling of maize (Zea mays L.) leaves infected with Ustilago maydis
    Wang, Jinglu
    Zhang, Ying
    Du, Jianjun
    Pan, Xiaodi
    Ma, Liming
    Shao, Meng
    Guo, Xinyu
    GENOME, 2018, 61 (07) : 505 - 513
  • [36] Fusarium – Problematik bei Körnermais (Zea Mays L.)Fusarium – ear rot in maize (zea mays l.)
    Christine Papst
    Josef Zellner
    Sadhu Venkataratnam
    Joachim Eder
    Gesunde Pflanzen, 2007, 59 (1): : 7 - 16
  • [37] waxy Locus and Its Mutant Types in Maize Zea mays L.
    Huang Bin-quan
    Tian Meng-liang
    Zhang Jun-jie
    Huang Yu-bi
    AGRICULTURAL SCIENCES IN CHINA, 2010, 9 (01): : 1 - 10
  • [38] GENERATION MEAN ANALYSIS IN MAIZE (ZEA MAYS L.) UNDER DROUGHT STRESS
    Moharramnejad, Sajjad
    Valizadeh, Mostafa
    Emaratpardaz, Javid
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (04): : 2518 - 2522
  • [39] Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.)
    Mallikarjuna, Mallana Gowdra
    Thirunavukkarasu, Nepolean
    Sharma, Rinku
    Shiriga, Kaliyugam
    Hossain, Firoz
    Bhat, Jayant S.
    Mithra, Amitha C. R.
    Marla, Soma Sunder
    Manjaiah, Kanchikeri Math
    Rao, A. R.
    Gupta, Hari Shanker
    PLANTS-BASEL, 2020, 9 (12): : 1 - 31
  • [40] Genetic Analysis of Maize (Zea mays L.) Hybrids Using Microsatellite Markers
    Elci, Eminur
    Hancer, Tugce
    JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2015, 21 (02): : 192 - 198