Molecular cloning and expression analysis of an HINT1 homologue from maize (Zea mays L.)

被引:8
|
作者
Wu, Liuji [1 ]
Wang, Xintao [1 ]
Wu, Liancheng [1 ]
Wang, Pingan [1 ]
Chen, Yanhui [1 ]
机构
[1] Henan Agr Univ, Coll Agron, Zhengzhou 450002, Peoples R China
基金
中国博士后科学基金;
关键词
Histidine triad nucleotide binding protein; Immune response; Maize; Molecular cloning; RT-PCR expression analysis; HISTIDINE TRIAD PROTEINS; GENE; APRATAXIN; IMPACT; ATAXIA; KIN28; MICE;
D O I
10.1007/s11105-011-0296-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Histidine triad nucleotide binding protein (HINT1) belongs to a histidine triad (HIT) superfamily, which contains a highly conserved His-X-His-X-His-XX motif (X is a hydrophobic amino acid) and plays an important role in many biological processes. In this study, we have isolated the full-length cDNA of an HINT1 homologue from maize (Zea mays L.), designated as Zm-HINT1. The full-length cDNA of Zm-HINT1 consists of 729 bp with an ORF encoding a 138-amino acid protein. The deduced amino acid sequence of Zm-HINT1 shows high sequence homology to the mammalian HINT1 and contains conserved domains including the HIT motif, helical regions and beta-strands, which are the characteristics of HINT1 proteins. The phylogenetic analysis has revealed that Zm-HINT1 is branched along with Caenorhabditis elegans HINT1. RT-PCR analysis has revealed that Zm-HINT1 is ubiquitously expressed in maize tissues but not in the pericarp, thus suggesting that Zm-HINT1 may not be related to the production of fibrin. Furthermore, expression levels of Zm-HINT1 have increased rapidly following treatment with salicylic acid. Taken together, these results indicate that Zm-HINT1 is a mammalian HINT1 homologue and may be involved in the immune response of maize.
引用
收藏
页码:1006 / 1012
页数:7
相关论文
共 50 条
  • [21] Genetic structure and molecular mechanism underlying the stalk lodging traits in maize (Zea mays L.)
    Wang, Shuai
    Li, Huangai
    Dong, Zhenying
    Wang, Cheng
    Wei, Xun
    Long, Yan
    Wan, Xiangyuan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 485 - 494
  • [22] Quantification of transgene expression in maize (Zea mays L.) throughout the vegetation period
    Bako, A.
    Gell, G.
    Balazs, E.
    PLANT BREEDING, 2011, 130 (01) : 41 - 45
  • [23] Genetic analysis of resistance to nematodes in inbred maize (Zea mays L.) and maize hybrids
    Kagoda, Frank
    Derera, John
    Tongoona, Pangirayi
    Coyne, Daniel L.
    Lorenzen, J.
    EUPHYTICA, 2011, 182 (03) : 377 - 393
  • [24] Genetic analysis of resistance to nematodes in inbred maize (Zea mays L.) and maize hybrids
    Frank Kagoda
    John Derera
    Pangirayi Tongoona
    Daniel L. Coyne
    J. Lorenzen
    Euphytica, 2011, 182 : 377 - 393
  • [25] Characterization of maize (Zea mays L.) germplasm of Angola
    Bige, T.
    Lorenzoni, C.
    MAYDICA, 2007, 52 (02): : 135 - 144
  • [26] Microsatellite megatracts in the maize (Zea mays L.) genome
    Ananiev, EV
    Chamberlin, MA
    Klaiber, J
    Svitashev, S
    GENOME, 2005, 48 (06) : 1061 - 1069
  • [27] Microsatellite Fingerprinting of Maize Cultivars (Zea mays L.)
    H. Kaur
    N. K. Sarao
    Y. Vikal
    K. Singh
    R. C. Sharma
    Cereal Research Communications, 2011, 39 : 507 - 514
  • [28] Fusarium -: ear rot in maize (zea mays l.)
    Papst, Christine
    Zellner, Josef
    Venkataratnam, Sadhu
    Eder, Joachim
    GESUNDE PFLANZEN, 2007, 59 (01): : 7 - 16
  • [29] Heterosis and character association in maize (Zea mays L.)
    Das, UR
    Hadiuzzaman, S
    Sarker, RH
    BANGLADESH JOURNAL OF BOTANY, 2001, 30 (02): : 85 - 88
  • [30] HERBICIDE CONTROL OF THE WEEDS IN MAIZE (Zea mays L.)
    Mitkov, Anyo
    Yanev, Mariyan
    Neshev, Nesho
    Tityanov, Miroslav
    Tonev, Tonvo
    SCIENTIFIC PAPERS-SERIES A-AGRONOMY, 2019, 62 (01): : 368 - 373