Low ML Decoding Complexity STBCs via Codes Over the Klein Group

被引:2
作者
Natarajan, Lakshmi Prasad [1 ]
Rajan, B. Sundar [1 ]
机构
[1] Indian Inst Sci, Dept Elect Commun Engn, Bangalore 560012, Karnataka, India
关键词
Clifford algebra; cubic shaping; full diversity; information-losslessness; Klein group; low maximum-likelihood (ML) decoding complexity; Pauli matrices; space-time codes; TIME BLOCK-CODES; FULL-DIVERSITY; ORTHOGONAL DESIGNS; DECODABLE STBCS; SPACE; BOUNDS;
D O I
10.1109/TIT.2011.2170113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we give a new framework for constructing low ML decoding complexity space-time block codes (STBCs) using codes over the Klein group K. Almost all known low ML decoding complexity STBCs can be obtained via this approach. New full- diversity STBCs with low ML decoding complexity and cubic shaping property are constructed, via codes over K, for number of transmit antennas N = 2(m), m >= 1, and rates R > 1 complex symbols per channel use. When R = N, the new STBCs are information- lossless as well. The new class of STBCs have the least knownML decoding complexity among all the codes available in the literature for a large set of (N, R) pairs.
引用
收藏
页码:7950 / 7971
页数:22
相关论文
共 43 条
[1]   A simple transmit diversity technique for wireless communications [J].
Alamouti, SM .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1998, 16 (08) :1451-1458
[2]  
[Anonymous], 2008, Quantum Computation and Quantum Information
[3]   New algebraic constructions of rotated Zn-Lattice constellations for the Rayleigh fading channel [J].
Bayer-Fluckiger, E ;
Oggier, F ;
Viterbo, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (04) :702-714
[4]   The Golden code: A 2x2 full-rate space-time code with nonvanishing determinants [J].
Belfiore, JC ;
Rekaya, G ;
Viterbo, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (04) :1432-1436
[5]   On Fast-Decodable Space-Time Block Codes [J].
Biglieri, Ezio ;
Hong, Yi ;
Viterbo, Emanuele .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (02) :524-530
[6]   Diagonal algebraic space-time block codes [J].
Damen, MO ;
Abed-Meraim, K ;
Belfiore, JC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) :628-636
[7]   Four-group decodable space-time block codes [J].
Dao, Dung Ngoc ;
Yuen, Chau ;
Tellambura, Chintha ;
Guan, Yong Liang ;
Tjhung, Tjeng Thiang .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) :424-430
[8]  
DEABREU GTF, 2005, P IEEE 39 AS C SIGN
[9]   BOUNDS FOR DETERMINANT OF SUM OF HERMITIAN MATRICES [J].
FIEDLER, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 30 (01) :27-&
[10]  
Gilbert J., 1991, Clifford algebras and Dirac operator in Harmonic Analysis