Surface Lattice Plasmon Resonances by Direct In Situ Substrate Growth of Gold Nanoparticles in Ordered Arrays

被引:38
作者
Vinnacombe-Willson, Gail A. [1 ]
Conti, Ylli [2 ]
Jonas, Steven J. [3 ,4 ]
Weiss, Paul S. [1 ,3 ,5 ,6 ]
Mihi, Agustin [2 ]
Scarabelli, Leonardo [2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] CSIC, ICMAB, Inst Mat Sci Barcelona, Campus UAB, Bellaterra 08193, Spain
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pediat, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
bottom-up synthesis; in situ growth; lattice plasmon resonance; plasmonic arrays; HYDROXYPROPYL CELLULOSE; PERIODIC ARRAYS; SEEDED GROWTH; SHAPE; SIZE; NANOSTARS; NANOSTRUCTURES; HYDROGEL; RELEASE; SERS;
D O I
10.1002/adma.202205330
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Precise arrangements of plasmonic nanoparticles on substrates are important for designing optoelectronics, sensors and metamaterials with rational electronic, optical and magnetic properties. Bottom-up synthesis offers unmatched control over morphology and optical response of individual plasmonic building blocks. Usually, the incorporation of nanoparticles made by bottom-up wet chemistry starts from batch synthesis of colloids, which requires time-consuming and hard-to-scale steps like ligand exchange and self-assembly. Herein, an unconventional bottom-up wet-chemical synthetic approach for producing gold nanoparticle ordered arrays is developed. Water-processable hydroxypropyl cellulose stencils facilitate the patterning of a reductant chemical ink on which nanoparticle growth selectively occurs. Arrays exhibiting lattice plasmon resonances in the visible region and near infrared (quality factors of >20) are produced following a rapid synthetic step (<10 min), all without cleanroom fabrication, specialized equipment, or self-assembly, constituting a major step forward in establishing in situ growth approaches. Further, the technical capabilities of this method through modulation of the particle size, shape, and array spacings directly on the substrate are demonstrated. Ultimately, establishing a fundamental understanding of in situ growth has the potential to inform the fabrication of plasmonic materials; opening the door for in situ growth fabrication of waveguides, lasing platforms, and plasmonic sensors.
引用
收藏
页数:11
相关论文
共 102 条
[31]   Plasmon-Mediated Synthesis of Periodic Arrays of Gold Nanoplates Using Substrate-Immobilized Seeds Lined with Planar Defects [J].
Golze, Spencer D. ;
Hughes, Robert A. ;
Rouvimov, Sergei ;
Neal, Robert D. ;
Demille, Trevor B. ;
Neretina, Svetlana .
NANO LETTERS, 2019, 19 (08) :5653-5660
[32]   Mechanotunable Surface Lattice Resonances in the Visible Optical Range by Soft Lithography Templates and Directed Self-Assembly [J].
Gupta, Vaibhav ;
Probst, Patrick T. ;
Gossler, Fabian R. ;
Steiner, Anja Maria ;
Schubert, Jonas ;
Brasse, Yannic ;
Koenig, Tobias A. F. ;
Fery, Andreas .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (31) :28189-28196
[33]   Novel Approach to Controllable Synthesis of Gold Nanoparticles Supported on Polyaniline Nanofibers [J].
Han, Jie ;
Li, Liya ;
Guo, Rong .
MACROMOLECULES, 2010, 43 (24) :10636-10644
[34]   Large-Scale Plasmonic Pyramidal Supercrystals via Templated Self-Assembly of Monodisperse Gold Nanospheres [J].
Hanske, Christoph ;
Gonzalez-Rubio, Guillermo ;
Hamon, Cyrille ;
Formentin, Pilar ;
Modin, Evgeny ;
Chuvilin, Andrey ;
Guerrero-Martinez, Andres ;
Marsal, Lluis F. ;
Liz-Marzan, Luis M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (20) :10899-10906
[35]   Tuning Electrogenerated Chemiluminescence Intensity Enhancement Using Hexagonal Lattice Arrays of Gold Nanodisks [J].
Heiderscheit, Thomas S. ;
Oikawa, Shunpei ;
Sanders, Stephen ;
Minamimoto, Hiro ;
Searles, Emily K. ;
Landes, Christy F. ;
Murakoshi, Kei ;
Manjavacas, Alejandro ;
Link, Stephan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (10) :2516-2522
[36]   Catalyst design by scanning probe block copolymer lithography [J].
Huang, Liliang ;
Chen, Peng-Cheng ;
Liu, Mohan ;
Fu, Xianbiao ;
Gordiichuk, Pavlo ;
Yu, Yanan ;
Wolverton, Chris ;
Kang, Yijin ;
Mirkin, Chad A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (15) :3764-3769
[37]   Aligned Growth of Gold Nanorods in PMMA Channels: Parallel Preparation of Nanogaps [J].
Jain, Titoo ;
Lara-Avila, Samuel ;
Kervennic, Yann-Vai ;
Moth-Poulsen, Kasper ;
Norgaard, Kasper ;
Kubatkin, Sergey ;
Bjornholm, Thomas .
ACS NANO, 2012, 6 (05) :3861-3867
[38]   A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure [J].
Jeon, Jiyeon ;
Bhattarai, Khagendra ;
Kim, Deok-Kee ;
Kim, Jun Oh ;
Urbas, Augustine ;
Lee, Sang Jun ;
Ku, Zahyun ;
Zhou, Jiangfeng .
SCIENTIFIC REPORTS, 2016, 6
[39]   Arrays of Plasmonic Nanoparticle Dimers with Defined Nanogap Spacers [J].
Jeong, Hyeon-Ho ;
Adarns, Melanie C. ;
Guenther, Jan-Philipp ;
Alarcon-Correa, Mariana ;
Kim, Insook ;
Choi, Eunjin ;
Miksch, Cornelia ;
Mark, Alison F. ;
Mark, Andrew G. ;
Fischer, Peer .
ACS NANO, 2019, 13 (10) :11453-11459
[40]   Surface Enhanced Raman Scattering Encoded Gold Nanostars for Multiplexed Cell Discrimination [J].
Jimenez de Aberasturi, Dorleta ;
Serrano-Montes, Ana B. ;
Langer, Judith ;
Henriksen-Lacey, Malou ;
Parak, Wolfgang J. ;
Liz-Marzan, Luis M. .
CHEMISTRY OF MATERIALS, 2016, 28 (18) :6779-6790