Integrable ladder t-J model with staggered shift of the spectral parameter

被引:13
作者
Ambjorn, J
Arnaudon, D
Sedrakyan, A
Sedrakyan, T
Sorba, P
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[2] Univ Savoie, Lab Annecy Le Vieux Phys Theor, CNRS, UMR 5108, F-74941 Annecy Le Vieux, France
[3] Yerevan Phys Inst, Yerevan 375036, Armenia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 30期
关键词
D O I
10.1088/0305-4470/34/30/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalization of the Yang-Baxter equations in the presence of Z(2) grading along both chain and time directions is presented and an integrable model of t-J type with staggered disposition of shifts of the spectral parameter along the chain is constructed. The Hamiltonian of the model is computed in the fermionic formulation. It involves three neighbour site interactions and therefore can be considered as a zigzag ladder model. The algebraic Bethe ansatz technique is applied and the eigenstates as well as the eigenvalues of the transfer matrix of the model are found. It is argued that in the thermodynamic limit the lowest energy of the model is formed by the quarter filling of the states by fermions instead of the usual half filling.
引用
收藏
页码:5887 / 5900
页数:14
相关论文
共 46 条
  • [1] An exactly solvable model of generalized spin ladder
    Albeverio, S
    Fei, SM
    Wang, Y
    [J]. EUROPHYSICS LETTERS, 1999, 47 (03): : 364 - 370
  • [2] A new family of integrable extended multi-band Hubbard Hamiltonians
    Ambjorn, J
    Sedrakyan, A
    Avakyan, A
    Hakobyan, T
    [J]. MODERN PHYSICS LETTERS A, 1998, 13 (07) : 495 - 503
  • [3] AMBJORN J, 2001, IN PRESS NUCL PHYS
  • [4] Integrable chain model with additional staggered model parameter
    Arnaudon, D
    Poghossian, R
    Sedrakyan, A
    Sorba, P
    [J]. NUCLEAR PHYSICS B, 2000, 588 (03) : 638 - 655
  • [5] A family of affine quantum group invariant integrable extensions of the Hubbard Hamiltonian
    Avakyan, A
    Hakobyan, T
    Sedrakyan, A
    [J]. NUCLEAR PHYSICS B, 1997, 490 (03) : 633 - 652
  • [6] EXACT SOLUTION OF THE T-J MODEL IN ONE DIMENSION AT 2T = +/- J - GROUND-STATE AND EXCITATION SPECTRUM
    BARES, PA
    BLATTER, G
    OGATA, M
    [J]. PHYSICAL REVIEW B, 1991, 44 (01): : 130 - 154
  • [7] Exactly solvable quantum spin tubes and ladders
    Batchelor, MT
    Maslen, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (33): : L377 - L380
  • [8] Exactly solvable quantum spin ladders associated with the orthogonal and symplectic Lie algebras
    Batchelor, MT
    de Gier, J
    Links, J
    Maslen, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12): : L97 - L101
  • [9] BAXTER J, 1982, EXACTLY SOLVED MODEL
  • [10] Surprises on the way from one- to two-dimensional quantum magnets: The ladder materials
    Dagotto, E
    Rice, TM
    [J]. SCIENCE, 1996, 271 (5249) : 618 - 623