共 56 条
Determining Dispersal Mechanisms of Protoplanetary Disks Using Accretion and Wind Mass Loss Rates
被引:14
作者:
Hasegawa, Yasuhiro
[1
]
Haworth, Thomas J.
[2
]
Hoadley, Keri
[3
]
Kim, Jinyoung Serena
[4
,5
]
Goto, Hina
[4
]
Juzikenaite, Aine
[2
]
Turner, Neal J.
[1
]
Pascucci, Ilaria
[5
,6
]
Hamden, Erika T.
[4
]
机构:
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[2] Queen Mary Univ London, Sch Phys & Astron, Astron Unit, London E1 4NS, England
[3] Univ Iowa, Dept Phys & Astron, 203 Van Allen Hall, Iowa City, IA 52242 USA
[4] Univ Arizona, Dept Astron, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA
[5] NASA Nexus Exoplanet Syst Sci, Alien Earths Team, Moffett Field, CA USA
[6] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
基金:
美国国家航空航天局;
关键词:
MAGNETOROTATIONAL INSTABILITY;
CIRCUMSTELLAR DISKS;
PHOTOEVAPORATION;
EVOLUTION;
STELLAR;
STARS;
DISCS;
SIMULATIONS;
DESTRUCTION;
ULTRAVIOLET;
D O I:
10.3847/2041-8213/ac50aa
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
Understanding the origin of accretion and dispersal of protoplanetary disks is fundamental for investigating planet formation. Recent numerical simulations show that launching winds are unavoidable when disks undergo magnetically driven accretion and/or are exposed to external UV radiation. Observations also hint that disk winds are common. We explore how the resulting wind mass loss rate can be used as a probe of both disk accretion and dispersal. As a proof-of-concept study, we focus on magnetocentrifugal winds, magnetorotational instability turbulence, and external photoevapotaion. By developing a simple yet physically motivated disk model and coupling it with simulation results available in the literature, we compute the wind mass loss rate as a function of external UV flux for each mechanism. We find that different mechanisms lead to different levels of mass loss rate, indicating that the origin of disk accretion and dispersal can be determined, by observing the wind mass loss rate resulting from each mechanism. This determination provides important implications for planet formation. This work thus shows that the ongoing and future observations of the wind mass loss rate for protoplanetary disks are paramount to reliably constrain how protoplanetary disks evolve with time and how planet formation takes place in the disks.
引用
收藏
页数:12
相关论文