Single-image super-resolution with multilevel residual attention network

被引:9
作者
Qin, Ding [1 ]
Gu, Xiaodong [1 ]
机构
[1] Fudan Univ, Dept Elect Engn, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution; Deep convolutional neural network; Attention mechanism; Residual learning; NEURAL-NETWORK;
D O I
10.1007/s00521-020-04896-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, a great variety of image super-resolution (SR) algorithms based on convolutional neural network (CNN) have been proposed and achieved significant improvement. But how to restore more high-frequency details such as edges and textures is still an unsolved issue. The low-frequency information is similar in a pair of low-resolution and high-resolution images. So the SR model is supposed to pay more attention to the high-frequency features to restore more realistic images. But most CNN-based methods don't consider the different types of features and think the features in different channels and regions contribute equally to the reconstruction performance, which limits the representation capacity of the model. In the meantime, most of these deep networks only simply stack blocks like residual block, which only capture the local features. In this paper, we propose a deep multilevel residual attention network (MRAN) for image SR to focus on the high-frequency features and improve the flow of information. Specially, we propose a channel-wise attention module and a spatial attention module to rescale the channel-wise and spatial weights adaptively, which makes our MRAN focus more on the high-frequency information. Meanwhile, to improve the flow of information and ease the training process, the multilevel residual learning is adopted. Extensive experimental results on five benchmark datasets demonstrate that our MRAN is superior to those state-of-the-art methods for both accuracy and visual comparisons.
引用
收藏
页码:15615 / 15628
页数:14
相关论文
共 37 条
[1]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[2]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[3]   A modular neural network for super-resolution of human faces [J].
Carcenac, Manuel .
APPLIED INTELLIGENCE, 2009, 30 (02) :168-186
[4]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[5]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[6]   Image Super-Resolution via Dual-State Recurrent Networks [J].
Han, Wei ;
Chang, Shiyu ;
Liu, Ding ;
Yu, Mo ;
Witbrock, Michael ;
Huang, Thomas S. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1654-1663
[7]   Deep Back-Projection Networks For Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1664-1673
[8]  
HE KM, 2016, PROC CVPR IEEE, P770, DOI DOI 10.1109/CVPR.2016.90
[9]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[10]  
Huang G., 2017, P IEEE C COMP VIS PA, P4700, DOI DOI 10.1109/CVPR.2017.243