On a class of three-phase checkerboards with unusual effective properties

被引:2
作者
Craster, Richard V. [2 ]
Guenneau, Sebastien [1 ]
Kaplunov, Julius [3 ]
Nolde, Evgeniya [3 ]
机构
[1] Univ Aix Marseille, Inst Fresnel, UMR 6133, CNRS, F-13000 Marseille, France
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[3] Brunel Univ, Dept Math Sci, Uxbridge VB8 3PH, Middx, England
来源
COMPTES RENDUS MECANIQUE | 2011年 / 339卷 / 06期
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Waves; Homogenization; Negative refraction; Acoustic band; HIGH-FREQUENCY HOMOGENIZATION; CONDUCTIVITY; ARRAY;
D O I
10.1016/j.crme.2011.03.016
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We examine the band spectrum, and associated Floquet-Bloch eigensolutions, arising in a class of three-phase periodic checkerboards. On a periodic cell [-1, 1[2, the refractive index, n, is defined by n(2) = 1 + g(1)(x(1)) + g(2)(x(2)) with g(i)(x(i)) = r(2) for 0 <= x(i) < 1, and g(i)(x(i)) = 0 for -1 <= x(i) < 0 where r(2) is constant. We find that for r(2) > -1 the lowest frequency branch goes through origin with linear behaviour, which leads to effective properties encountered in most periodic structures. However, the case whereby r(2) = -1 is very unusual, as the frequency A behaves like near the origin, where k is the wavenumber. Finally, when r(2) < -1, the lowest branch does not pass through the origin and a zero-frequency band gap opens up. In the last two cases, effective medium theory breaks down even in the quasi-static limit, while the high-frequency homogenization [R.V. Craster, J. Kaplunov, A.V. Pichugin, High-frequency homogenization for periodic media, Proc. R. Soc. Lond. Ser. A 466 (2010) 2341-2362] neatly captures the detailed features of band diagrams. (C) 2011 Published by Elsevier Masson SAS on behalf of Academie des sciences.
引用
收藏
页码:411 / 417
页数:7
相关论文
共 22 条
[1]   Time harmonic wave diffraction problems in materials with sign-shifting coefficients [J].
Bonnet-Ben Dhia, A. S. ;
Ciarlet, P., Jr. ;
Zwoelf, C. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (06) :1912-1919
[2]  
BRILLOUIN L., 1946, WAVE PROPAGATION PER
[3]   High-Frequency Asymptotics, Homogenisation and Localisation for Lattices [J].
Craster, R. V. ;
Kaplunov, J. ;
Postnova, J. .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2010, 63 (04) :497-519
[4]   High-frequency homogenization for periodic media [J].
Craster, R. V. ;
Kaplunov, J. ;
Pichugin, A. V. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2120) :2341-2362
[5]   High-frequency homogenization for checkerboard structures: defect modes, ultrarefraction, and all-angle negative refraction [J].
Craster, Richard V. ;
Kaplunov, Julius ;
Nolde, Evgeniya ;
Guenneau, Sebastien .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (06) :1032-1040
[6]   Four-phase checkerboard composites [J].
Craster, RV ;
Obnosov, YV .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2001, 61 (06) :1839-1856
[7]   All-angle-negative-refraction and ultra-refraction for liquid surface waves in 2D phononic crystals [J].
Farhat, Mohamed ;
Guenneau, Sebastien ;
Enoch, Stefan ;
Movchan, Alexander .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (06) :2011-2019
[8]   Anomalous refractive properties of photonic crystals [J].
Gralak, B ;
Enoch, S ;
Tayeb, G .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (06) :1012-1020
[9]   Negative refractive index, perfect lenses and checkerboards: Trapping and imaging effects in folded optical spaces [J].
Guenneau, Sebastien ;
Ramakrishna, S. Anantha .
COMPTES RENDUS PHYSIQUE, 2009, 10 (05) :352-378
[10]   Superlensing effect in liquid surface waves [J].
Hu, XH ;
Shen, YF ;
Liu, XH ;
Fu, RT ;
Zi, J .
PHYSICAL REVIEW E, 2004, 69 (03) :030201-1