Methods for estimating the optimal dividend barrier and the probability of ruin

被引:29
作者
Gerber, Hans U. [1 ]
Shiu, Elias S. W. [2 ]
Smith, Nathaniel [1 ]
机构
[1] Univ Lausanne, Ecole Hautes Etud Commerciales, CH-1015 Lausanne, Switzerland
[2] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
关键词
optimal dividend barrier; ruin probability; Levy processes; subordinators; De Vylder approximations; diffusion approximations; Lundberg function; Lundberg's fundamental equation; gamma processes; RISK;
D O I
10.1016/j.insmatheco.2007.02.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
In applications of collective risk theory, complete information about the individual claim amount distribution is often not known, but reliable estimates of its first few moments may be available. For such a situation, this paper develops methods for estimating the optimal dividend barrier and the probability of ruin. In particular, two De Vylder approximations are explained, and the first and second order diffusion approximations are examined. For several claim amount distributions, the approximate values are compared numerically with the exact values. The De Vylder and diffusion approximations can be adapted to the more general situation where the aggregate claims process is a Levy process with nonnegative increments. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:243 / 254
页数:12
相关论文
共 20 条
[1]  
Buhlmann H., 1970, Mathematical Methods in Risk Theory
[2]  
Chan B., 1990, ASTIN Bulletin, V20, P113, DOI DOI 10.2143/AST.20.1.2005487
[3]  
Chan B, 2006, N AM ACTUAR J, V10, P133, DOI 10.1080/10920277.2006.10596258
[4]  
De Vylder F., 1978, Scandinavian Actuarial Journal, P114
[5]   OPTIMAL DIVIDENDS UNDER A RUIN PROBABILITY CONSTRAINT [J].
Dickson, D. C. M. ;
Drekic, S. .
ANNALS OF ACTUARIAL SCIENCE, 2006, 1 (02) :291-306
[6]  
Dickson D.C.M., 2016, Insurance Risk and Ruin, V2nd ed., DOI [10.1017/9781316650776, DOI 10.1017/9781316650776]
[7]   Fitting combinations of exponentials to probability distributions [J].
Dufresne, Daniel .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2007, 23 (01) :23-48
[8]  
Dufresne F., 1991, ASTIN BULL, V22, P177, DOI DOI 10.2143/AST.21.2.2005362
[9]  
Feller William, 1971, An introduction to probability theory and its applications, V2
[10]  
Gerber H, 1979, INTRO MATH RISK THEO