Comparison and sub-supersolution principles for the fractional p(x)-Laplacian

被引:93
作者
Bahrouni, Anouar [1 ]
机构
[1] Univ Monastir, Math Dept, Fac Sci, Monastir 5019, Tunisia
关键词
Fractional p(x)-Laplace operator; Comparison principle; Sub-supersolution principle; MULTIPLICITY; BOUNDARY;
D O I
10.1016/j.jmaa.2017.10.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the new fractional Sobolev space W-s,W-q(x),W-P(x,W-y), where q and p are variable exponents and s is an element of (0,1), and the related nonlocal operator, which is a fractional version of the nonhomogeneous p(x)-Laplace operator. We first give some further qualitative properties of W-s,W-q(x),W-P(x,W-y). We also show the strong comparison principle for the fractional p(x)-Laplace operator. A sub-super-solution for the nonlocal equations involving the fractional p(x)-Laplacian is established. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1363 / 1372
页数:10
相关论文
共 26 条