One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation

被引:96
作者
Liu, Zhengzhe [1 ]
Qi, Xiaojuan [2 ]
Fu, Chi-Wing [1 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Hong Kong, Peoples R China
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
NETWORKS;
D O I
10.1109/CVPR46437.2021.00177
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point cloud semantic segmentation often requires large-scale annotated training data, but clearly, point-wise labels are too tedious to prepare. While some recent methods propose to train a 3D network with small percentages of point labels, we take the approach to an extreme and propose "One Thing One Click," meaning that the annotator only needs to label one point per object. To leverage these extremely sparse labels in network training, we design a novel self-training approach, in which we iteratively conduct the training and label propagation, facilitated by a graph propagation module. Also, we adopt a relation network to generate the per-category prototype and explicitly model the similarity among graph nodes to generate pseudo labels to guide the iterative training. Experimental results on both ScanNet-v2 and S3DIS show that our self-training approach, with extremely-sparse annotations, outperforms all existing weakly supervised methods for 3D semantic segmentation by a large margin, and our results are also comparable to those of the fully supervised counterparts.
引用
收藏
页码:1726 / 1736
页数:11
相关论文
共 55 条
[1]   Learning Pixel-level Semantic Affinity with Image-level Supervision forWeakly Supervised Semantic Segmentation [J].
Ahn, Jiwoon ;
Kwak, Suha .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4981-4990
[2]  
Armeni I., 2017, arXiv
[3]   What's the Point: Semantic Segmentation with Point Supervision [J].
Bearman, Amy ;
Russakovsky, Olga ;
Ferrari, Vittorio ;
Fei-Fei, Li .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :549-565
[4]   ConvPoint: Continuous convolutions for point cloud processing [J].
Boulch, Alexandre .
COMPUTERS & GRAPHICS-UK, 2020, 88 :24-34
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[7]   3DMV: Joint 3D-Multi-view Prediction for 3D Semantic Scene Segmentation [J].
Dai, Angela ;
Niessner, Matthias .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :458-474
[8]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[9]   ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes [J].
Dai, Angela ;
Chang, Angel X. ;
Savva, Manolis ;
Halber, Maciej ;
Funkhouser, Thomas ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2432-2443
[10]   BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation [J].
Dai, Jifeng ;
He, Kaiming ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1635-1643