Filtration at the microfluidic level: enrichment of nanoparticles by tunable filters

被引:10
作者
Boettcher, M. [1 ]
Schmidt, S. [2 ]
Latz, A. [2 ]
Jaeger, M. S. [1 ]
Stuke, M. [3 ]
Duschl, C. [4 ]
机构
[1] Univ Saarland, Fac Clin Med, D-66421 Homburg, Germany
[2] Fraunhofer Inst Ind Math ITWM Flow & Mat Simulat, D-67663 Kaiserslautern, Germany
[3] Max Planck Inst Biophys Chem, Res Grp Laser Chem Proc, D-37077 Gottingen, Germany
[4] Fraunhofer Inst Biomed Engn IBMT, D-14476 Potsdam, Germany
关键词
AC ELECTRIC-FIELDS; FLOW; ELECTROCONVECTION; MICROELECTRODES; HYDRODYNAMICS; ELECTROLYTES; ACCUMULATION; PARTICLES; DEVICE; SIZE;
D O I
10.1088/0953-8984/23/32/324101
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present an electrohydrodynamic device for filtration of nanometre-sized particles from suspensions. A high-frequency electric field is locally generated through the action of mutually parallel microelectrodes integrated into a microfluidic channel. Due to the mechanism of ohmic heating, a thermal gradient arises above these electrodes. In conjunction with temperature-sensitive properties of the fluid, an eddy flow behaviour emerges in the laminar environment. This acts as an adjustable filter. For quantification of the filtration efficiency, we tested a wide range of particle concentrations at different electric field strengths and overall external flow velocities. Particles with a diameter of 200 nm were retained in this manner at rates of up to 100%. Numerical simulations of a model taking into account the hydrodynamic as well as electric conditions, but no interactions between the point-shaped particles, yield results that are similar to the experiment in both the flow trajectories and the particle accumulation. Our easy technique could become a valuable tool that complements conventional filtration methods for handling nanometre-scaled particles in medicine and biotechnology, e. g. bacteria and viruses.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Deterministic hydrodynamics: Taking blood apart [J].
Davis, John A. ;
Inglis, David W. ;
Morton, Keith J. ;
Lawrence, David A. ;
Huang, Lotien R. ;
Chou, Stephen Y. ;
Sturm, James C. ;
Austin, Robert H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (40) :14779-14784
[2]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[3]  
Faivre M, 2006, BIORHEOLOGY, V43, P147
[4]   Accumulation and filtering of nanoparticles in microchannels using electrohydrodynamically induced vortical flows [J].
Felten, Maika ;
Staroske, Wolfgang ;
Jaeger, Magnus S. ;
Schwille, Petra ;
Duschl, Claus .
ELECTROPHORESIS, 2008, 29 (14) :2987-2996
[5]   Controlling electrohydrodynamic pumping in microchannels through defined temperature fields [J].
Felten, Maika ;
Geggier, Peter ;
Jaeger, Magnus ;
Duschl, Claus .
PHYSICS OF FLUIDS, 2006, 18 (05)
[6]  
Ferziger JH., 1996, COMPUTATIONAL METHOD
[7]   Surface acoustic wave actuated cell sorting (SAWACS) [J].
Franke, T. ;
Braunmueller, S. ;
Schmid, L. ;
Wixforth, A. ;
Weitz, D. A. .
LAB ON A CHIP, 2010, 10 (06) :789-794
[8]   TRAVELING WAVE-DRIVEN MICROFABRICATED ELECTROHYDRODYNAMIC PUMPS FOR LIQUIDS [J].
FUHR, G ;
SCHNELLE, T ;
WAGNER, B .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 1994, 4 (04) :217-226
[9]  
Fuhr G., 1992, Journal of Microelectromechanical Systems, V1, P141, DOI 10.1109/84.186393
[10]   The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology [J].
Gast, FU ;
Dittrich, PS ;
Schwille, P ;
Weigel, M ;
Mertig, M ;
Opitz, J ;
Queitsch, U ;
Diez, S ;
Lincoln, B ;
Wottawah, F ;
Schinkinger, S ;
Guck, J ;
Käs, J ;
Smolinski, J ;
Salchert, K ;
Werner, C ;
Duschl, C ;
Jäger, MS ;
Uhlig, K ;
Geggier, P ;
Howitz, S .
MICROFLUIDICS AND NANOFLUIDICS, 2006, 2 (01) :21-36