Parameter Estimation in Three-Phase Power Distribution Networks Using Smart Meter Data

被引:8
作者
Wang, Wenyu [1 ]
Yu, Nanpeng [1 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
来源
2020 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS) | 2020年
关键词
Distribution network; maximum likelihood estimation; parameter estimation; smart meter; SYSTEM STATE; IDENTIFICATION;
D O I
10.1109/pmaps47429.2020.9183638
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate estimates of network parameters are essential for advanced control and monitoring in power distribution systems. The existing methods for parameter estimation either assume a simple single-phase network model or require widespread installation of micro-phasor measurement units (micro-PMUs), which are cost prohibitive. In this paper, we propose a parameter estimation approach, which considers three-phase series impedance and only leverages readily available smart meter measurements. We first build a physical model based on the linearized three-phase power flow manifold, which links the network parameters with the smart meter measurements. The parameter estimation problem is then formulated as a maximum likelihood estimation (MLE) problem. We prove that the correct network parameters yield the highest likelihood value. A stochastic gradient descent (SGD) method with early stopping is then adopted to solve the MLE problem. Comprehensive numerical tests show that the proposed algorithm improves the accuracy of the network parameters.
引用
收藏
页数:6
相关论文
共 17 条
  • [1] On Identification of Distribution Grids
    Ardakanian, Omid
    Wong, Vincent W. S.
    Dobbe, Roel
    Low, Steven H.
    von Meier, Alexandra
    Tomlin, Claire J.
    Yuan, Ye
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2019, 6 (03): : 950 - 960
  • [2] Joint Estimation of State and Parameter With Synchrophasors-Part II: Parameter Tracking
    Bian, Xiaomeng
    Li, X. Rong
    Chen, Huimin
    Gan, Deqiang
    Qiu, Jiaju
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (03) : 1209 - 1220
  • [3] Improving Supervised Phase Identification Through the Theory of Information Losses
    Foggo, Brandon
    Yu, Nanpeng
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (03) : 2337 - 2346
  • [4] Foggo Brandon., 2018, International Journal of Computer and Systems Engineering, V12, P419, DOI DOI 10.5281/ZENODO.1316877
  • [5] Distribution System Parameter and Topology Estimation Applied to Resolve Low-Voltage Circuits on Three Real Distribution Feeders
    Lave, Matthew
    Reno, Matthew J.
    Peppanen, Jouni
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019, 10 (03) : 1585 - 1592
  • [6] Liao YZ, 2019, Arxiv, DOI arXiv:1809.07192
  • [7] PARAMETER ERROR IDENTIFICATION AND ESTIMATION IN POWER-SYSTEM STATE ESTIMATION
    LIU, WHE
    LIM, SL
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (01) : 200 - 209
  • [8] Distribution Line Parameter Estimation Under Consideration of Measurement Tolerances
    Prostejovsky, Alexander M.
    Gehrke, Oliver
    Kosek, Anna M.
    Strasser, Thomas
    Bindner, Henrik W.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (02) : 726 - 735
  • [9] Power System State and Transmission Line Conductor Temperature Estimation
    Rakpenthai, Chawasak
    Uatrongjit, Sermsak
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (03) : 1818 - 1827
  • [10] A Method for Accurate Transmission Line Impedance Parameter Estimation
    Ritzmann, Deborah
    Wright, Paul S.
    Holderbaum, William
    Potter, Ben
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (10) : 2204 - 2213