Higher-order mass-lumped finite elements for the wave equation

被引:33
作者
Mulder, WA [1 ]
机构
[1] Shell Int Explorat & Prod BV, NL-2280 AB Rijswijk, Netherlands
关键词
D O I
10.1142/S0218396X0100067X
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The finite-element method (FEM) with mass lumping is an efficient scheme for modeling seismic wave propagation in the subsurface, especially in the presence of sharp velocity contrasts and rough topography. A number of numerical simulations for triangles are presented to illustrate the strength of the method. A comparison to the finite-difference method shows that the added complexity of the FEM is amply compensated by its superior accuracy, making the FEM the more efficient approach.
引用
收藏
页码:671 / 680
页数:10
相关论文
共 18 条
[1]  
AKIN J, 1986, FINITE ELEMENT ANAL
[2]  
Boore D M., 1972, Methods in computational physics, V11, P1
[3]  
Buchberger B., 1979, LECT NOTES COMPUT SC, V72, P3
[4]   Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation [J].
Chin-Joe-Kong, MJS ;
Mulder, WA ;
Van Veldhuizen, M .
JOURNAL OF ENGINEERING MATHEMATICS, 1999, 35 (04) :405-426
[5]  
COHEN G, 1995, SIAM PROC S, P270
[6]  
COHEN G, 1993, SIAM PROC S, P152
[7]   THE APPLICATION OF HIGH-ORDER DIFFERENCING TO THE SCALAR WAVE-EQUATION [J].
DABLAIN, MA .
GEOPHYSICS, 1986, 51 (01) :54-66
[8]  
Fried I., 1975, International Journal of Solids and Structures, V11, P461, DOI 10.1016/0020-7683(75)90081-5
[9]   CUBATURE FORMULAS FOR THE SURFACE OF THE SPHERE [J].
KEAST, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (1-2) :151-172
[10]   FULLY SYMMETRIC INTEGRATION FORMULAS FOR THE SURFACE OF THE SPHERE IN S-DIMENSIONS [J].
KEAST, P ;
DIAZ, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :406-419