Layered Manganese Oxides as Electrodes for Water Desalination via Hybrid Capacitive Deionization

被引:0
作者
Byles, Bryan W. [1 ]
Hayes-Oberst, Brendan [1 ]
Pomerantseva, Ekaterina [1 ]
机构
[1] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
来源
LOW-DIMENSIONAL MATERIALS AND DEVICES | 2018年 / 10725卷
基金
美国国家科学基金会;
关键词
hybrid capacitive deionization; manganese oxide; layered crystal structures; birnessite; buserite; BIRNESSITE; TRANSFORMATIONS; INTERCALATION; EXCHANGE; ENERGY;
D O I
10.1117/12.2321136
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work explores the ion removal performance of Na-birnessite and Mg-buserite during extended cycling in NaCl and MgCl2 solutions in a hybrid capacitive deionization (HCDI) cell. These two layered manganese oxides (LMOs) contain two-dimensional diffusion pathways and thus present the potential for enhanced ion diffusion and higher performance in HCDI. Correlation between stabilizing ions and ions removed from solution are investigated. In NaCl solution, Mg-buserite shows the largest ion removal capacity of 37.2 mg g(-1) while the reverse is true in MgCl2 solution, where Na-birnessite delivers a capacity of 50.2 mg g(-1). Furthermore, ex-situ XRD after 200 cycles revealed the changes in the structures of the two materials after repeated ion removal-ion release. These results demonstrate that materials with two-dimensional crystal structures can demonstrate high capacities in HCDI and show that interlayer content and spacing can dramatically impact material stability in electrochemical water desalination.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? [J].
Anderson, Marc A. ;
Cudero, Ana L. ;
Palma, Jesus .
ELECTROCHIMICA ACTA, 2010, 55 (12) :3845-3856
[2]  
[Anonymous], 2018, GLOBAL RISKS 2018
[3]   Theory of membrane capacitive deionization including the effect of the electrode pore space [J].
Biesheuvel, P. M. ;
Zhao, R. ;
Porada, S. ;
van der Wal, A. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 360 (01) :239-248
[4]  
Byles B, 2015, TODOROKITE TYPE MANG
[5]   The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries [J].
Byles, B. W. ;
Palapati, N. K. R. ;
Subramanian, A. ;
Pomerantseva, E. .
APL MATERIALS, 2016, 4 (04)
[6]  
Byles B. W, REVERSIBLE INTERCALA
[7]  
Byles B.W., 2015, RSC ADV
[8]   Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization [J].
Byles, Bryan W. ;
Cullen, David A. ;
More, Karren L. ;
Pomerantseva, Ekaterina .
NANO ENERGY, 2018, 44 :476-488
[9]   Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes [J].
Clites, Mallory ;
Pomerantseva, Ekaterina .
ENERGY STORAGE MATERIALS, 2018, 11 :30-37
[10]   TRANSFORMATION OF HAUSMANNITE INTO BIRNESSITE IN ALKALINE MEDIA [J].
CORNELL, RM ;
GIOVANOLI, R .
CLAYS AND CLAY MINERALS, 1988, 36 (03) :249-257