Nitrogen-Doped Ti3C2 MXene Quantum Dots/1D CdS Nanorod Heterostructure Photocatalyst of Highly Efficient Hydrogen Evolution

被引:1
作者
Ding, Lan [1 ]
Zeng, Senwei [1 ]
Zhang, Weiye [1 ]
Guo, Chao [1 ]
Chen, Xinyi [1 ]
Peng, Bo [2 ]
Lv, Zhongpeng [2 ]
Zhou, Hongjun [1 ]
Xu, Quan [1 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc Beijing Key Lab Bioga, Beijing 102249, Peoples R China
[2] Aalto Univ, Dept Appl Phys, Aalto 00076, Finland
基金
中国国家自然科学基金;
关键词
photocatalytic H-2 evolution; Ti3C2 ???????MXene quantum dots; 1D CdS nanorod; cocatalysts; water splitting; NANOSHEETS; CARBON;
D O I
10.1021/acsaem.2c02001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-driven photocatalytic hydrogen production is considered an effective strategy to mitigate the current energy and environmental challenges. Herein, a function heterostructure photo catalyst of 1D CdS nanorod rationally supported nitrogen-doped Ti3C2 MXene quantum dots (N-MQDs) is successfully constructed via the self-assembly strategy. Impressively, N-MQDs/CdS exhibits superior photocatalytic hydrogen production performance with an efficiency rate of 17094 mu mol g(-1) h(-1), which is 14.79 times higher than pure CdS. The strong oxidizing performance of N-MQDs/CdS also presents an efficient activity for the photodegradation of phenol. The significant enhancement in performance is mainly due to the synergistic effect of the tight interfacial contact and matched energy levels between the highly conductive Ti3C2 MXene quantum dots and 1D CdS nanorod, which greatly accelerates the separation and transfer of photogenerated carriers. Regulating the energy band structure of photocatalysts via multifunctional MXene materials could hopefully motivate further interest in the reasonable design of MXene-semiconductor photocatalytic materials in energy and environmental applications.
引用
收藏
页码:11540 / 11552
页数:13
相关论文
共 67 条
[1]   Efficient Combination of G-C3N4 and CDs for Enhanced Photocatalytic Performance: A Review of Synthesis, Strategies, and Applications [J].
Ai, Lin ;
Shi, Run ;
Yang, Jie ;
Zhang, Kan ;
Zhang, Tierui ;
Lu, Siyu .
SMALL, 2021, 17 (48)
[2]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[3]   Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation [J].
Bai, Junxian ;
Shen, Rongchen ;
Jiang, Zhimin ;
Zhang, Peng ;
Li, Youji ;
Li, Xin .
CHINESE JOURNAL OF CATALYSIS, 2022, 43 (02) :359-369
[4]   In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction [J].
Bie, Chuanbiao ;
Zhu, Bicheng ;
Xu, Feiyan ;
Zhang, Liuyang ;
Yu, Jiaguo .
ADVANCED MATERIALS, 2019, 31 (42)
[5]   Versatile polyphenolic platforms in regulating cell biology [J].
Cao, Huan ;
Yang, Lei ;
Tian, Rong ;
Wu, Haoxing ;
Gu, Zhipeng ;
Li, Yiwen .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (10) :4175-4198
[6]   2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction [J].
Cao, Shaowen ;
Shen, Baojia ;
Tong, Tong ;
Fu, Junwei ;
Yu, Jiaguo .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (21)
[7]   Ultrathin Visible-Light-Driven Mo Incorporating In2O3-ZnIn2Se4 Z-Scheme Nanosheet Photocatalysts [J].
Chao, Yuguang ;
Zhou, Peng ;
Li, Na ;
Lai, Jianping ;
Yang, Yong ;
Zhang, Yelong ;
Tang, Yonghua ;
Yang, Wenxiu ;
Du, Yaping ;
Su, Dong ;
Tan, Yisheng ;
Guo, Shaojun .
ADVANCED MATERIALS, 2019, 31 (05)
[8]   Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity [J].
Chen, Peng ;
Liu, Fan ;
Ding, Hongzhi ;
Chen, Sheng ;
Chen, Lang ;
Li, You-Ji ;
Au, Chak-Tong ;
Yin, Shuang-Feng .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 252 :33-40
[9]   Carbon dots mediated charge sinking effect for boosting hydrogen evolution in Cu-In-Zn-S QDs/MoS2 photocatalysts [J].
Chen, Qitao ;
Liu, Yanhong ;
Gu, Xiaoqing ;
Li, Di ;
Zhang, Dongxu ;
Zhang, Dongqi ;
Huang, Hui ;
Mao, Baodong ;
Kang, Zhenhui ;
Shi, Weidong .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 301
[10]   6-Mercaptopurine-Induced Fluorescence Quenching of Monolayer MoS2 Nanodots: Applications to Glutathione Sensing, Cellular Imaging, and Glutathione-Stimulated Drug Delivery [J].
Chen, Shih-Chiang ;
Lin, Chang-Yu ;
Cheng, Tian-Lu ;
Tseng, Wei-Lung .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (41)