Lagrangian fractional mechanics - a noncommutative approach

被引:37
作者
Klimek, M [1 ]
机构
[1] Czestochowa Tech Univ, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
fractional derivative; fractional mechanics; Euler-Lagrange equations;
D O I
10.1007/s10582-006-0024-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The extension of coordinate-velocity space with noncommutative algebra structure is proposed. For action of fractional mechanics considered on such a space the respective Euler-Lagrange equations are derived via minimum action principle. It appears that equations of motion in the noncommutative framework do not mix left and right derivatives thus being simple to solve at least in the linear case. As an example, two models of oscillator with fractional derivatives are studied.
引用
收藏
页码:1447 / 1453
页数:7
相关论文
共 15 条
[1]  
Hilfer R., 2001, Applications of Fractional Calculus in Physics
[3]   Lagrangean and Hamiltonian fractional sequential mechanics [J].
Klimek, M .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (11) :1247-1253
[4]  
KLIMEK M, UNPUB
[5]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108
[6]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305
[7]  
LASKIN N, QUANTPH0504106
[8]   Generalized Chapman-Kolmogorov equation: A unifying approach to the description of anomalous transport in external fields [J].
Metzler, R .
PHYSICAL REVIEW E, 2000, 62 (05) :6233-6245
[9]   From a generalized Chapman-Kolmogorov equation to the fractional Klein-Kramers equation [J].
Metzler, R ;
Klafter, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3851-3857
[10]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77