Influence of pH and fuels on the combustion synthesis, structural, morphological, electrical and magnetic properties of CoFe2O4 nanoparticles

被引:21
作者
Shanmugavani, A. [1 ]
Selvan, R. Kalai [1 ]
Layek, Samar [2 ]
Vasylechko, Leonid [3 ]
Sanjeeviraja, C. [4 ]
机构
[1] Bharathiar Univ, Dept Phys, Solid State Ion & Energy Devices Lab, Coimbatore 641046, Tamil Nadu, India
[2] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[3] Lviv Polytech Natl Univ, Semicond Elect Dept, UA-79013 Lvov, Ukraine
[4] Alagappa Chettiar Coll Engn & Technol, Dept Phys, Karaikkudi 630004, Tamil Nadu, India
关键词
Chemical synthesis; Crystal structure; Jonscher power law; Dielectric response; Grain boundaries; Magnetic measurements; SOL-GEL METHOD; CATION DISTRIBUTION; FERRITE; CONDUCTIVITY; BEHAVIOR; GLYCINE; FILMS; SIZE; CO;
D O I
10.1016/j.materresbull.2015.04.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocrystalline spinel cobalt ferrite particles are synthesized by simple combustion method using aspartic acid and glycine as fuels. The single phase cubic structure of CoFe2O4 is revealed through X-ray diffraction analysis (XRD). Further the Rietveld refinement confirms the formation of inverse spinel structure of CoFe2O4. The characteristic functional groups of Co-O and Fe-O are identified from Fourier Transform Infrared (FT-IR) analysis. Uniform distribution of of nearly spherical particles with the size range of 40-80 nm is identified through field emission scanning electron microscope (FESEM) images. The calculated DC conductivity is 1.469 x 10(-7) and 2.214 x 10(-8) S cm(-1), for CoFe2O4 synthesized using aspartic acid and glycine, respectively. The dielectric behavior obeys the Maxwell-Wagner interfacial polarization. The ferromagnetic behavior of CoFe2O4 is identified using VSM analysis and the calculated coercivity is 27 Oe and saturation magnetization is 68 emu/g. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:122 / 132
页数:11
相关论文
共 48 条
  • [1] Rare earth doping effect on the structural and electrical properties of Mg-Ti ferrite
    Ahmed, MA
    Ateia, E
    El-Dek, SI
    [J]. MATERIALS LETTERS, 2003, 57 (26-27) : 4256 - 4266
  • [2] Akselrud L. G., 1993, MATER SCI FORUM, V133-136, P335
  • [3] Silicon-Doped LiFePO4 Single Crystals: Growth, Conductivity Behavior, and Diffusivity
    Amin, Ruhul
    Lin, Chengtian
    Peng, Jubo
    Weichert, Katja
    Acartuerk, Tolga
    Starke, Ulrich
    Maier, Joachim
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (11) : 1697 - 1704
  • [4] Bonanos N, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, P205, DOI 10.1002/0471716243.ch4
  • [5] DEAN J A., 1999, Lange's handbook of chemistry M, V13th
  • [6] Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties
    Faiyas, A. P. A.
    Vinod, E. M.
    Joseph, J.
    Ganesan, R.
    Pandey, R. K.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (04) : 400 - 404
  • [7] Goldman A., 2006, MODERN FERRITE TECHN
  • [8] Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine-nitrate combustion process
    Hajarpour, S.
    Gheisari, Kh.
    Raouf, A. Honarbakhsh
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 329 : 165 - 169
  • [9] Structural, electrical and magnetic properties of Co-Cu ferrite nanoparticles
    Hashim, Mohd.
    Alimuddin
    Kumar, Shalendra
    Koo, B. H.
    Shirsath, Sagar E.
    Mohammed, E. M.
    Shah, Jyoti
    Kotnala, R. K.
    Choi, H. K.
    Chung, H.
    Kumar, Ravi
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 518 : 11 - 18
  • [10] Hierarchical NiO nanoflake coated CuO flower core-shell nanostructures for supercapacitor
    Huang, Ming
    Li, Fei
    Zhang, Yu Xin
    Li, Bo
    Gao, Xing
    [J]. CERAMICS INTERNATIONAL, 2014, 40 (04) : 5533 - 5538