WEAK SOLUTIONS FOR DEGENERATE SEMILINEAR ELLIPTIC BVPS IN UNBOUNDED DOMAINS

被引:0
作者
Kar, Rasmita [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Semilinear elliptic boundary value problem; unbounded domain; pseudomonotone operator; BOUNDARY-VALUE-PROBLEMS; PSEUDO-MONOTONE OPERATORS; POSITIVE SOLUTIONS; EQUATIONS; EXISTENCE; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove the existence of a weak solution for the degenerate semilinear elliptic Dirichlet boundary-value problem Lu(x) + Sigma(n)(i=1)g(x)h(u(x))D(i)u(x) = f(x) in Omega, u=0 on partial derivative Omega, in a suitable weighted Sobolev space. Here Omega subset of R-n, 1 <= n <= 3, is not necessarily bounded.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Benci Vieri, 1979, Ann. Mat. Pura Appl., V121, P319
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]  
BERESTYCKI H, 1983, ARCH RATIONAL MECH A, V82, P346
[4]   EMBEDDING THEOREMS AND QUASILINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS FOR UNBOUNDED DOMAINS [J].
BERGER, MS ;
SCHECHTE.M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 172 (NOCT) :261-278
[5]   EXISTENCE AND BIFURCATION THEOREMS FOR NON-LINEAR ELLIPTIC EIGENVALUE PROBLEMS ON UNBOUNDED-DOMAINS [J].
BONGERS, A ;
HEINZ, HP ;
KUPPER, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 47 (03) :327-357
[6]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&
[7]   PSEUDO-MONOTONE OPERATORS AND NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS ON UNBOUNDED DOMAINS [J].
BROWDER, FE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (07) :2659-2661
[9]   An approximation theorem for solutions of degenerate elliptic equations [J].
Cavalheiro, AC .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 :363-389
[10]  
Chanillo S., 1985, AM J MATH, V107, P1119