Asymptotic theory of linear water waves in a domain with nonuniform bottom with rapidly oscillating sections

被引:15
作者
Dobrokhotov, S. Yu. [1 ,2 ]
Grushin, V. V. [3 ]
Sergeev, S. A. [1 ,2 ]
Tirozzi, B. [4 ]
机构
[1] Russian Acad Sci, A Ishlinskii Inst Problems Mech, Moscow, Russia
[2] Moscow Inst Phys & Technol, Moscow, Russia
[3] Natl Res Univ Higher Sch Econ, Moscow, Russia
[4] RITMARE CINFAI, ENEA, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
GRAVITY-WAVES; HOMOGENIZATION; COEFFICIENTS; EQUATIONS;
D O I
10.1134/S1061920816040038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A linear problem for propagation of gravity waves in the basin having the bottom of a form of a smooth background with added rapid oscillations is considered. The formulas derived below are asymptotic ones; they are quite formal, and we do not discuss the problem concerning their uniformness with respect to these parameters.
引用
收藏
页码:455 / 474
页数:20
相关论文
共 23 条
[1]  
Bakhvalov NS., 1984, Averaging Processes in Periodic Media
[2]  
Belov V. V., 2016, J ENGRY MATH, V55, P183
[3]  
Bensoussan A., STUDIES MATH ITS APP, V5, pXXIV
[4]   Averaging of linear operators, adiabatic approximation, and pseudodifferential operators [J].
Bruening, J. ;
Grushin, V. V. ;
Dobrokhotov, S. Yu. .
MATHEMATICAL NOTES, 2012, 92 (1-2) :151-165
[5]  
Bruening J., 2011, THEOR MATH PHYS, V167, P171
[6]  
Bruening J., 2012, RUSS J MATH PHYS, V19, P1
[7]  
Buslaev V. S., 1987, MATH SURVEYS, V42, P77
[8]   On a homogenization method for differential operators with oscillating coefficients [J].
Dobrokhotov, S. Yu. ;
Nazaikinskii, V. E. ;
Tirozzi, B. .
DOKLADY MATHEMATICS, 2015, 91 (02) :227-231
[9]   Asymptotic solutions of the Cauchy problem with localized initial conditions for linearized two-dimensional Boussinesq-type equations with variable coefficients [J].
Dobrokhotov, S. Yu ;
Sergeev, S. A. ;
Tirozzi, B. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (02) :155-171
[10]  
Dobrokhotov S. Yu., 1984, Uspekhi Mat. Nauk, V39, P125