Response of surface shortwave cloud radiative effect to greenhouse gases and aerosols and its impact on summer maximum temperature

被引:13
作者
Tang, Tao [1 ]
Shindell, Drew [1 ]
Zhang, Yuqiang [1 ]
Voulgarakis, Apostolos [2 ]
Lamarque, Jean-Francois [3 ]
Myhre, Gunnar [4 ]
Stjern, Camilla W. [4 ]
Faluvegi, Gregory [5 ,6 ]
Samset, Bjorn H. [4 ]
机构
[1] Duke Univ, Div Earth & Ocean Sci, Durham, NC 27708 USA
[2] Imperial Coll London, Dept Phys, London, England
[3] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[4] Ctr Int Climate & Environm Res, CICERO, Oslo, Norway
[5] Columbia Univ, Ctr Climate Syst Res, New York, NY USA
[6] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
关键词
EARTH SYSTEM MODEL; BLACK CARBON AEROSOLS; CLIMATE-CHANGE; SOIL-MOISTURE; PRECIPITATION; SIMULATION; FEEDBACK; EUROPE; HEAT; CONVERGENCE;
D O I
10.5194/acp-20-8251-2020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Shortwave cloud radiative effects (SWCREs), defined as the difference of the shortwave radiative flux between all-sky and clear-sky conditions at the surface, have been reported to play an important role in influencing the Earth's energy budget and temperature extremes. In this study, we employed a set of global climate models to examine the SWCRE responses to CO2, black carbon (BC) aerosols, and sulfate aerosols in boreal summer over the Northern Hemisphere. We found that CO2 causes positive SWCRE changes over most of the NH, and BC causes similar positive responses over North America, Europe, and eastern China but negative SWCRE over India and tropical Africa. When normalized by effective radiative forcing, the SWCRE from BC is roughly 3-5 times larger than that from CO2. SWCRE change is mainly due to cloud cover changes resulting from changes in relative humidity (RH) and, to a lesser extent, changes in cloud liquid water, circulation, dynamics, and stability. The SWCRE response to sulfate aerosols, however, is negligible compared to that for CO2 and BC because part of the radiation scattered by clouds under all-sky conditions will also be scattered by aerosols under clear-sky conditions. Using a multilinear regression model, it is found that mean daily maximum temperature (T-max) increases by 0.15 and 0.13 K per watt per square meter (Wm(-2)) increase in local SWCRE under the CO2 and BC experiment, respectively. When domain-averaged, the contribution of SWCRE change to summer mean T-max changes was 10 %-30 % under CO2 forcing and 30 %-50 % under BC forcing, varying by region, which can have important implications for extreme climatic events and socioeconomic activities.
引用
收藏
页码:8251 / 8266
页数:16
相关论文
共 88 条
  • [41] Effects of black carbon aerosols on the Indian monsoon
    Meehl, Gerald A.
    Arblaster, Julie M.
    Collins, William D.
    [J]. JOURNAL OF CLIMATE, 2008, 21 (12) : 2869 - 2882
  • [42] Climate effects of black carbon aerosols in China and India
    Menon, S
    Hansen, J
    Nazarenko, L
    Luo, YF
    [J]. SCIENCE, 2002, 297 (5590) : 2250 - 2253
  • [43] Cloud Feedback Key to Marine Heatwave off Baja California
    Myers, Timothy A.
    Mechoso, Carlos R.
    Cesana, Gregory V.
    DeFlorio, Michael J.
    Waliser, Duane E.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (09) : 4345 - 4352
  • [44] Observational Evidence That Enhanced Subsidence Reduces Subtropical Marine Boundary Layer Cloudiness
    Myers, Timothy A.
    Norris, Joel R.
    [J]. JOURNAL OF CLIMATE, 2013, 26 (19) : 7507 - 7524
  • [45] Myhre G, 2017, B AM METEOROL SOC, V98, P1185, DOI [10.1175/BAMS-D-16-0019.1, 10.1175/bams-d-16-0019.1]
  • [46] Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
    Myhre, G.
    Samset, B. H.
    Schulz, M.
    Balkanski, Y.
    Bauer, S.
    Berntsen, T. K.
    Bian, H.
    Bellouin, N.
    Chin, M.
    Diehl, T.
    Easter, R. C.
    Feichter, J.
    Ghan, S. J.
    Hauglustaine, D.
    Iversen, T.
    Kinne, S.
    Kirkevag, A.
    Lamarque, J. -F.
    Lin, G.
    Liu, X.
    Lund, M. T.
    Luo, G.
    Ma, X.
    van Noije, T.
    Penner, J. E.
    Rasch, P. J.
    Ruiz, A.
    Seland, O.
    Skeie, R. B.
    Stier, P.
    Takemura, T.
    Tsigaridis, K.
    Wang, P.
    Wang, Z.
    Xu, L.
    Yu, H.
    Yu, F.
    Yoon, J. -H.
    Zhang, K.
    Zhang, H.
    Zhou, C.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (04) : 1853 - 1877
  • [47] Myhre G, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P659
  • [48] Neale R. B., 2010, DESCRIPTION NCAR COM
  • [49] CLIMATE VARIABILITY AND CHANGE SINCE 850 CE An Ensemble Approach with the Community Earth System Model
    Otto-Bliesner, Bette L.
    Brady, Esther C.
    Fasullo, John
    Jahn, Alexandra
    Landrum, Laura
    Stevenson, Samantha
    Rosenbloom, Nan
    Mai, Andrew
    Strand, Gary
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (05) : 735 - 754
  • [50] Influence of climate on malaria transmission depends on daily temperature variation
    Paaijmans, Krijn P.
    Blanford, Simon
    Bell, Andrew S.
    Blanford, Justine I.
    Read, Andrew F.
    Thomas, Matthew B.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (34) : 15135 - 15139