Homography Loss for Monocular 3D Object Detection

被引:16
|
作者
Gu, Jiaqi [1 ,2 ]
Wu, Bojian [1 ]
Fan, Lubin [1 ]
Huang, Jianqiang [1 ]
Cao, Shen [1 ]
Xiang, Zhiyu [2 ]
Hua, Xian-Sheng [1 ]
机构
[1] Alibaba Cloud Comp Ltd, Hangzhou, Peoples R China
[2] Zhejiang Univ, Hangzhou, Peoples R China
基金
国家重点研发计划;
关键词
D O I
10.1109/CVPR52688.2022.00115
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular 3D object detection is an essential task in autonomous driving. However, most current methods consider each 3D object in the scene as an independent training sample, while ignoring their inherent geometric relations, thus inevitably resulting in a lack of leveraging spatial constraints. In this paper, we propose a novel method that takes all the objects into consideration and explores their mutual relationships to help better estimate the 3D boxes. Moreover, since 2D detection is more reliable currently, we also investigate how to use the detected 2D boxes as guidance to globally constrain the optimization of the corresponding predicted 3D boxes. To this end, a differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information, aiming at balancing the positional relationships between different objects by global constraints, so as to obtain more accurately predicted 3D boxes. Thanks to the concise design, our loss function is universal and can be plugged into any mature monocular 3D detector, while significantly boosting the performance over their baseline. Experiments demonstrate that our method yields the best performance (Nov. 2021) compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
引用
收藏
页码:1070 / 1079
页数:10
相关论文
共 50 条
  • [21] A New Monocular 3D Object Detection with Neural Network
    Hong, Weijie
    Liu, Yiguang
    Zheng, Yunan
    Wang, Ying
    Shi, Xuelei
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 174 - 185
  • [22] 3D Visual Object Detection from Monocular Images
    Wang, Qiaosong
    Rasmussen, Christopher
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 168 - 180
  • [23] Competition for roadside camera monocular 3D object detection
    Jia, Jinrang
    Shi, Yifeng
    Qu, Yuli
    Wang, Rui
    Xu, Xing
    Zhang, Hai
    NATIONAL SCIENCE REVIEW, 2023, 10 (06)
  • [24] Objects are Different: Flexible Monocular 3D Object Detection
    Zhang, Yunpeng
    Lu, Jiwen
    Zhou, Jie
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3288 - 3297
  • [25] Monocular 3D Object Detection with Depth from Motion
    Wang, Tai
    Pang, Jiangmiao
    Lin, Dahua
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 386 - 403
  • [26] Monocular 3D object detection for construction scene analysis
    Shen, Jie
    Jiao, Lang
    Zhang, Cong
    Peng, Keran
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (09) : 1370 - 1389
  • [27] Delving into Localization Errors for Monocular 3D Object Detection
    Ma, Xinzhu
    Zhang, Yinmin
    Xu, Dan
    Zhou, Dongzhan
    Yi, Shuai
    Li, Haojie
    Ouyang, Wanli
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4719 - 4728
  • [28] Shape-Aware Monocular 3D Object Detection
    Chen, Wei
    Zhao, Jie
    Zhao, Wan-Lei
    Wu, Song-Yuan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 6416 - 6424
  • [29] Competition for roadside camera monocular 3D object detection
    Jinrang Jia
    Yifeng Shi
    Yuli Qu
    Rui Wang
    Xing Xu
    Hai Zhang
    NationalScienceReview, 2023, 10 (06) : 34 - 37
  • [30] MonoGRNet: A General Framework for Monocular 3D Object Detection
    Qin, Zengyi
    Wang, Jinglu
    Lu, Yan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5170 - 5184