Fluctuation-induced forces on an atom near a photonic topological material

被引:57
作者
Silveirinha, Mario G. [1 ,2 ,3 ]
Gangaraj, S. Ali Hassani [4 ]
Hanson, George W. [5 ]
Antezza, Mauro [3 ,6 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
[2] Inst Telecomunicacoes, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
[3] Univ Montpellier, CNRS, UMR 5221, L2C, F-34095 Montpellier, France
[4] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
[5] Univ Wisconsin, Dept Elect Engn, 3200 N Cramer St, Milwaukee, WI 53211 USA
[6] Inst Univ France, 1 Rue Descartes, F-75231 Paris 05, France
关键词
QUANTUM ELECTRODYNAMICS; CASIMIR FORCE; SURFACE; INTERFACE; STATES; MODES;
D O I
10.1103/PhysRevA.97.022509
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically study the Casimir-Polder force on an atom in an arbitrary initial state in a rather general electromagnetic environment wherein the materials may have a nonreciprocal bianisotropic dispersive response. It is shown that under the Markov approximation the force has resonant and nonresonant contributions. We obtain explicit expressions for the optical force both in terms of the system Green function and of the electromagnetic modes. We apply the theory to the particular case wherein a two-level system interacts with a topological gyrotropic material, showing that the nonreciprocity enables exotic light-matter interactions and the opportunity to sculpt and tune the Casimir-Polder forces on the nanoscale. With a quasistatic approximation, we obtain a simple analytical expression for the optical force and unveil the crucial role of surface plasmons in fluctuation-induced forces. Finally, we derive the Green function for a gyrotropic material half-space in terms of a Sommerfeld integral.
引用
收藏
页数:14
相关论文
共 57 条
[1]   QUANTUM ELECTRODYNAMICS IN PRESENCE OF DIELECTRICS AND CONDUCTORS .2. THEORY OF DISPERSION FORCES [J].
AGARWAL, GS .
PHYSICAL REVIEW A, 1975, 11 (01) :243-252
[2]   New asymptotic behavior of the surface-atom force out of thermal equilibrium [J].
Antezza, M ;
Pitaevskii, LP ;
Stringari, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (11)
[3]   Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media [J].
Bhat, Navin A. R. ;
Sipe, J. E. .
PHYSICAL REVIEW A, 2006, 73 (06)
[4]  
Bittencourt J. A., 2010, Fundamentals of Plasma Physics
[5]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[6]   van der Waals interaction between an atom and a metallic nanowire [J].
Boustimi, M ;
Baudon, J ;
Candori, P ;
Robert, J .
PHYSICAL REVIEW B, 2002, 65 (15) :1554021-1554026
[7]   Thermal Casimir versus Casimir-Polder forces: Equilibrium and nonequilibrium forces [J].
Buhmann, Stefan Yoshi ;
Scheel, Stefan .
PHYSICAL REVIEW LETTERS, 2008, 100 (25)
[8]   Casimir-Polder forces:: A nonperturbative approach -: art. no. 052117 [J].
Buhmann, SY ;
Knöll, L ;
Welsch, DG ;
Dung, HT .
PHYSICAL REVIEW A, 2004, 70 (05) :052117-1
[9]   NONRECIPROCAL SURFACE-WAVES [J].
CAMLEY, RE .
SURFACE SCIENCE REPORTS, 1987, 7 (3-4) :103-187
[10]   THE INFLUENCE OF RETARDATION ON THE LONDON-VANDERWAALS FORCES [J].
CASIMIR, HBG ;
POLDER, D .
PHYSICAL REVIEW, 1948, 73 (04) :360-372