Surface roughness image analysis using quasi-fractal characteristics and fuzzy clustering methods

被引:14
|
作者
Vesselenyi, Tiberiu [1 ]
Dzitac, Ioan [2 ]
Dzitac, Simona [1 ]
Vaida, Victor [1 ]
机构
[1] Univ Oradea, Oradea 410087, Romania
[2] Agora Univ Oradea, Dept Econ, Oradea 410526, Romania
关键词
image processing; surface roughness; quasi-fractal parameters; fuzzy clustering;
D O I
10.15837/ijccc.2008.3.2398
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the authors describe the results of experiments for surface roughness image acquisition and processing in order to develop an automated roughness control system. This implies the finding of a characteristic roughness parameter (for example Ra) on the bases of information contained in the image of the surface. To achieve this goal we use quasi-fractal characteristics and fuzzy clustering methods.
引用
收藏
页码:304 / 316
页数:13
相关论文
共 50 条
  • [31] Acceleration of fractal image compression using fuzzy clustering and discrete-cosine-transform-based metric
    Jaferzadeh, K.
    Kiani, K.
    Mozaffari, S.
    IET IMAGE PROCESSING, 2012, 6 (07) : 1024 - 1030
  • [32] Color image segmentation using color space analysis and fuzzy clustering
    Zhong, DX
    Yan, H
    NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 624 - 633
  • [33] Fractal analysis of surface roughness by using spatial data - Discussion on the paper by Davies and Hall
    Taylor, C
    Ripley, BD
    Wood, A
    Fan, JQ
    Yao, QW
    Titterington, DM
    Cox, TF
    Phillips, MJ
    Thomas, TR
    Yu, KM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 30 - 37
  • [34] Measurement of surface roughness of metals using binary speckle image analysis
    Kayahan, Ersin
    Oktem, Hasan
    Hacizade, Fikret
    Nasibov, Humbat
    Gundogdu, Ozcan
    TRIBOLOGY INTERNATIONAL, 2010, 43 (1-2) : 307 - 311
  • [35] Investigation of Porous Ceramic Using Image Analysis of Fractured Surface Roughness
    Buyakov, A. S.
    Zenkina, Yu A.
    Kulkov, S. N.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY, 2020, 2310
  • [36] Performance Analysis of Fuzzy C-Means Clustering Methods for MRI Image Segmentation
    Choudhry, Mahipal Singh
    Kapoor, Rajiv
    TWELFTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2016 / TWELFTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2016 / TWELFTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2016, 2016, 89 : 749 - 758
  • [37] Image Segmentation Using Clustering Methods
    Lamine, Benrais
    Nadia, Baha
    PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2, 2018, 16 : 129 - 141
  • [38] Prediction of the Sandstorm Based on Fuzzy Clustering Analysis And Fractal Theory
    Wang Jian-zhou
    Wang Zhibin
    Sun Dong-huai
    Lu Haiyan
    ICPOM2008: PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE OF PRODUCTION AND OPERATION MANAGEMENT, VOLUMES 1-3, 2008, : 618 - 623
  • [39] Fractal characteristics of surface roughness and its effect on laminar flow in microchannels
    Zhang Cheng-Bin
    Chen Yong-Ping
    Shi Ming-Heng
    Fu Pan-Pan
    Wu Jia-Feng
    ACTA PHYSICA SINICA, 2009, 58 (10) : 7050 - 7056
  • [40] Image clustering using fuzzy graph theory
    Jafarkhani, H
    Tarokh, V
    STORAGE AND RETRIEVAL FOR MEDIA DATABASES 2000, 2000, 3972 : 245 - 252