Surface roughness image analysis using quasi-fractal characteristics and fuzzy clustering methods

被引:14
|
作者
Vesselenyi, Tiberiu [1 ]
Dzitac, Ioan [2 ]
Dzitac, Simona [1 ]
Vaida, Victor [1 ]
机构
[1] Univ Oradea, Oradea 410087, Romania
[2] Agora Univ Oradea, Dept Econ, Oradea 410526, Romania
关键词
image processing; surface roughness; quasi-fractal parameters; fuzzy clustering;
D O I
10.15837/ijccc.2008.3.2398
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the authors describe the results of experiments for surface roughness image acquisition and processing in order to develop an automated roughness control system. This implies the finding of a characteristic roughness parameter (for example Ra) on the bases of information contained in the image of the surface. To achieve this goal we use quasi-fractal characteristics and fuzzy clustering methods.
引用
收藏
页码:304 / 316
页数:13
相关论文
共 50 条
  • [1] Surface roughness image analysis using fractal methods
    Vesselenyi, Tiberiu
    Moga, Ioan
    Mudura, Pavel
    ANNALS OF DAAAM FOR 2007 & PROCEEDINGS OF THE 18TH INTERNATIONAL DAAAM SYMPOSIUM: INTELLIGENT MANUFACTURING & AUTOMATION: FOCUS ON CREATIVITY, RESPONSIBILITY, AND ETHICS OF ENGINEERS, 2007, : 811 - 812
  • [2] Image segmentation using fuzzy clustering with fractal features
    Runkler, TA
    Bezdek, JC
    PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 1393 - 1398
  • [3] Characterization of surface roughness of MCM-41 using methods of fractal analysis
    Sonwane, CG
    Bhatia, SK
    Calos, NJ
    LANGMUIR, 1999, 15 (13) : 4603 - 4612
  • [4] Chessboard AMC Surface Based on Quasi-Fractal Structure for Wideband RCS Reduction
    Xue, Jingjing
    Jiang, Wen
    Gong, Shuxi
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (02): : 201 - 204
  • [5] Fractal analysis of surface roughness by using spatial data
    Davies, S
    Hall, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 3 - 29
  • [6] Using fuzzy clustering in structural methods of image classification
    Gorokhovatskyi V.Z.
    Tvoroshenko I.S.
    Vlasenko N.V.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 2020, 79 (09): : 781 - 791
  • [7] Numerical analysis on transmission properties of two-dimensional quasi-fractal phononic crystal
    Diao, Bin-Bin
    Shao, Chang-Jin
    Zhang, Wen-Na
    Liu, Li
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2008, 37 (05): : 1102 - 1106
  • [8] SMALL-SIZE QUASI-FRACTAL PATCH ANTENNA USING THE MINKOWSKI CURVE
    Oliveira, E. E. C.
    Silva, P. H. da F.
    Campos, A. L. P. S.
    d'Assuncao, A. G.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2010, 52 (04) : 805 - 809
  • [9] Research of Electrodynamic Characteristics of a Double-gap Klystron Resonator with Quasi-Fractal Microstrip Elements
    Miroshnichenko, Alexey Yu.
    Tsarev, Vladislav A.
    Akafyeva, Natalia A.
    Pchelnikov, Yuriy N.
    2018 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2018, : 407 - 408
  • [10] SURFACE ROUGHNESS IDENTIFICATION IN END MILLING USING VIBRATION SIGNALS AND FUZZY CLUSTERING
    Abu-Mahfouz, Issam
    Banerjee, Amit
    Rahman, A. H. M. Esfakur
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 4A, 2017,