Functional Multiple-Set Canonical Correlation Analysis

被引:12
|
作者
Hwang, Heungsun [1 ]
Jung, Kwanghee
Takane, Yoshio
Woodward, Todd S. [2 ,3 ]
机构
[1] McGill Univ, Dept Psychol, Montreal, PQ H3A 1B1, Canada
[2] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada
[3] British Columbia Mental Hlth & Addict Res Inst, Vancouver, BC, Canada
关键词
functional data; multiple-set canonical correlation analysis; functional canonical correlation analysis; functional magnetic resonance imaging data; PRINCIPAL COMPONENT ANALYSIS; MUSICAL PERFORMANCE; FACTORIAL; DYNAMICS; CURVES; FUSION; FMRI;
D O I
10.1007/s11336-011-9234-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the method solves a matrix eigen-analysis problem through the adoption of a basis expansion approach to approximating data and weight functions. We apply the proposed method to functional magnetic resonance imaging (fMRI) data to identify networks of neural activity that are commonly activated across subjects while carrying out a working memory task.
引用
收藏
页码:48 / 64
页数:17
相关论文
共 50 条
  • [1] Functional Multiple-Set Canonical Correlation Analysis
    Heungsun Hwang
    Kwanghee Jung
    Yoshio Takane
    Todd S. Woodward
    Psychometrika, 2012, 77 : 48 - 64
  • [2] A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation
    Choi, Ji Yeh
    Hwang, Heungsun
    Yamamoto, Michio
    Jung, Kwanghee
    Woodward, Todd S.
    PSYCHOMETRIKA, 2017, 82 (02) : 427 - 441
  • [3] A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation
    Ji Yeh Choi
    Heungsun Hwang
    Michio Yamamoto
    Kwanghee Jung
    Todd S. Woodward
    Psychometrika, 2017, 82 : 427 - 441
  • [4] A unified approach to multiple-set canonical correlation analysis and principal components analysis
    Hwang, Heungsun
    Jung, Kwanghee
    Takane, Yoshio
    Woodward, Todd S.
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2013, 66 (02) : 308 - 321
  • [5] BSMCCA: A BLOCK SPARSE MULTIPLE-SET CANONICAL CORRELATION ANALYSIS ALGORITHM FOR MULTI-SUBJECT FMRI DATA SETS
    Seghouane, Abd-Krim
    Iqbal, Asif
    Desai, Nandakishor
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 6324 - 6328
  • [6] Robustifying multiple-set linear canonical analysis with S-estimator
    Bivigou, Ulrich Djemby
    Nkiet, Guy Martial
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (05) : 571 - 576
  • [7] Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI
    Correa, Nicolle M.
    Eichele, Tom
    Adali, Tulay
    Li, Yi-Ou
    Calhoun, Vince D.
    NEUROIMAGE, 2010, 50 (04) : 1438 - 1445
  • [8] Functional generalized canonical correlation analysis for studying multiple longitudinal variables
    Sort, Lucas
    Le Brusquet, Laurent
    Tenenhaus, Arthur
    BIOMETRICS, 2024, 80 (04)
  • [9] Functional regularized generalized canonical correlation analysis
    Wang Z.
    Tenenhaus A.
    Wang H.
    Zhao Q.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (10): : 1960 - 1969
  • [10] ROBUST SMOOTHED CANONICAL CORRELATION ANALYSIS FOR FUNCTIONAL DATA
    Boente, Graciela
    Kudraszow, Nadia L.
    STATISTICA SINICA, 2022, 32 (03) : 1269 - 1293