Pairwise Semantic Segmentation via Conjugate Fully Convolutional Network

被引:6
作者
Wang, Renzhen [1 ,2 ]
Cao, Shilei [2 ]
Ma, Kai [2 ]
Meng, Deyu [1 ]
Zheng, Yefeng [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Peoples R China
[2] Tencent, Youtu Lab, Shenzhen, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI | 2019年 / 11769卷
关键词
Semantic segmentation; Pairwise segmentation; Conjugate fully convolutional network; Proxy supervision;
D O I
10.1007/978-3-030-32226-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation has been popularly addressed using fully convolutional networks (FCNs) with impressive results if the training set is diverse and large enough. However, FCNs often fail to achieve satisfactory results due to a limited number of manually labelled samples in medical imaging. In this paper, we propose a conjugate fully convolutional network (CFCN) to address this challenging problem. CFCN is a novel framework where pairwise samples are input and synergistically segmented in the network for capturing a rich context representation. To avoid overfitting introduced by appearance and shape changes in a small number of training samples, a fusion module is designed to provide proxy supervision for the network training process. Quantitative evaluation shows that the proposed method has a significant performance improvement on pathological liver segmentation.
引用
收藏
页码:157 / 165
页数:9
相关论文
共 14 条
[1]  
BenTaieb Aicha, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P460, DOI 10.1007/978-3-319-46723-8_53
[2]   DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation [J].
Chen, Hao ;
Qi, Xiaojuan ;
Yu, Lequan ;
Heng, Pheng-Ann .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2487-2496
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]  
Chen Liang-Chieh, 2018, ECCV, P801, DOI [DOI 10.1007/978-3-030-01234-249, 10.1007/978-3-030-01234-2_49]
[5]  
He K., 2016, CVPR, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]
[6]   Adaptive Affinity Fields for Semantic Segmentation [J].
Ke, Tsung-Wei ;
Hwang, Jyh-Jing ;
Liu, Ziwei ;
Yu, Stella X. .
COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 :605-621
[7]  
Kingma DP, 2014, ARXIV
[8]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[9]   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation [J].
Milletari, Fausto ;
Navab, Nassir ;
Ahmadi, Seyed-Ahmad .
PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, :565-571
[10]  
Paszke A., 2017, P NIPS WORKSH AUT, DOI DOI 10.1017/CB09781107707221.009