Identification of caveolin-1-interacting sites in neuronal nitric-oxide synthase - Molecular mechanism for inhibition of NO formation

被引:66
作者
Sato, Y [1 ]
Sagami, I [1 ]
Shimizu, T [1 ]
机构
[1] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, Sendai, Miyagi 9808577, Japan
关键词
D O I
10.1074/jbc.M310327200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Caveolin is known to down-regulate both neuronal (nNOS) and endothelial nitric-oxide synthase (eNOS). In the present study, direct interactions of recombinant caveolin-1 with both the oxygenase and reductase domains of nNOS were demonstrated using in vitro binding assays. To elucidate the mechanism of nNOS regulation by caveolin, we examined the effects of a caveolin-1 scaffolding domain peptide (CaV1p1; residues (82-101)) on the catalytic activities of wild-type and mutant nNOSs. CaV1p1 inhibited NO formation activity and NADPH oxidation of wild-type nNOS in a dose-dependent manner with an IC50 value of 1.8 muM. Mutations of Phe(584) and Trp(587) within a caveolin binding consensus motif of the oxygenase domain did not result in the loss of CaV1p1 inhibition, indicating that an alternate region of nNOS mediates inhibition by caveolin. The addition of CaV1p1 also inhibited more than 90% of the cytochrome c reductase activity in the isolated reductase domain with or without the calmodulin (CaM) binding site, whereas CaV1p1 inhibited ferricyanide reductase activity by only 50%. These results suggest that there are significant differences in the mechanism of inhibition by caveolin for nNOS as compared with those previously reported for eNOS. Further analysis of the interaction through the use of several reductase domain deletion mutants revealed that the FMN domain was essential for successful interaction between caveolin-1 and nNOS reductase. We also examined the effects of CaV1p1 on an autoinhibitory domain deletion mutant (Delta40) and a C-terminal truncation mutant (DeltaC33), both of which are able to form NO in the absence of CaM, unlike the wild-type enzyme. Interestingly, CaV1p1 inhibited CaM-dependent, but not CaM-independent, NO formation activities of both Delta40 and DeltaC33, suggesting that CaV1p1 inhibits interdomain electron transfer induced by CaM from the reductase domain to the oxygenase domain.
引用
收藏
页码:8827 / 8836
页数:10
相关论文
共 46 条
[1]   Neuronal nitric-oxide synthase mutant (Ser-1412 → Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis [J].
Adak, S ;
Santolini, J ;
Tikunova, S ;
Wang, Q ;
Johnson, JD ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (02) :1244-1252
[2]   NITRIC-OXIDE SYNTHASE COMPLEXED WITH DYSTROPHIN AND ABSENT FROM SKELETAL-MUSCLE SARCOLEMMA IN DUCHENNE MUSCULAR-DYSTROPHY [J].
BRENMAN, JE ;
CHAO, DS ;
XIA, HH ;
ALDAPE, K ;
BREDT, DS .
CELL, 1995, 82 (05) :743-752
[3]   In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation [J].
Bucci, M ;
Gratton, JP ;
Rudic, RD ;
Acevedo, L ;
Roviezzo, F ;
Cirino, G ;
Sessa, WC .
NATURE MEDICINE, 2000, 6 (12) :1362-1367
[4]   Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases [J].
Butt, E ;
Bernhardt, M ;
Smolenski, A ;
Kotsonis, P ;
Fröhlich, LG ;
Sickmann, A ;
Meyer, HE ;
Lohmann, SM ;
Schmidt, HHHW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) :5179-5187
[5]   Characterization of the roles of the 594-645 region in human endothelial nitric-oxide synthase in regulating calmodulin binding and electron transfer [J].
Chen, PF ;
Wu, KK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (17) :13155-13163
[6]   Identification of peptide and protein ligands for the caveolin-scaffolding domain - Implications for the interaction of caveolin with caveolae-associated proteins [J].
Couet, J ;
Li, SW ;
Okamoto, T ;
Ikezu, T ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (10) :6525-6533
[7]   Structure of nitric oxide synthase oxygenase dimer with pterin and substrate [J].
Crane, BR ;
Arvai, AS ;
Ghosh, DK ;
Wu, CQ ;
Getzoff, ED ;
Stuehr, DJ ;
Tainer, JA .
SCIENCE, 1998, 279 (5359) :2121-2126
[8]   The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca2+/calmodulin-dependent electron transfer [J].
Daff, S ;
Sagami, I ;
Shimizu, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (43) :30589-30595
[9]   The endothelial nitric-oxide synthase-caveolin regulatory cycle [J].
Feron, O ;
Saldana, F ;
Michel, JB ;
Michel, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (06) :3125-3128
[10]   Dynamic regulation of endothelial nitric oxide synthase: Complementary roles of dual acylation and caveolin interactions [J].
Feron, O ;
Michel, JB ;
Sase, K ;
Michel, T .
BIOCHEMISTRY, 1998, 37 (01) :193-200