Least-squares reverse time migration with and without source wavelet estimation

被引:14
|
作者
Zhang, Qingchen [1 ]
Zhou, Hui [1 ]
Chen, Hanming [1 ]
Wang, Jie [2 ]
机构
[1] China Univ Petr, CNPC Key Lab Geophys Explorat, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[2] SINOPEC Geophys Res Inst, Nanjing 211103, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
LSRTM; Source wavelet estimation; Deconvolution; Convolution; Hybrid norm; FORM INVERSION; EXTRAPOLATION; PHASE;
D O I
10.1016/j.jappgeo.2016.08.003
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Least-squares reverse time migration (LSRTM) attempts to find the best fit reflectivity model by minimizing the mismatching between the observed and simulated seismic data, where the source wavelet estimation is one of the crucial issues. We divide the frequency-domain observed seismic data by the numerical Green's function at the receiver nodes to estimate the source wavelet for the conventional LSRTM method, and propose the source-independent LSRTM based on a convolution-based objective function. The numerical Green's function can be simulated with a dirac wavelet and the migration velocity in the frequency or time domain. Compared to the conventional method with the additional source estimation procedure, the source-independent LSRTM is insensitive to the source wavelet and can still give full play to the amplitude-preserving ability even using an incorrect wavelet without the source estimation. In order to improve the anti-noise ability, we apply the robust hybrid norm objective function to both the methods and use the synthetic seismic data contaminated by the random Gaussian and spike noises with a signal-to-noise ratio of 5 dB to verify their feasibilities. The final migration images show that the source-independent algorithm is more robust and has a higher amplitude-preserving ability than the conventional source-estimated method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] Joint least-squares reverse time migration of primary and prismatic waves
    Yang, Jizhong
    Liu, Yuzhu
    Li, Yunyue Elita
    Cheng, Arthur
    Dong, Liangguo
    Du, Yue
    GEOPHYSICS, 2019, 84 (01) : S29 - S40
  • [42] Dual-scattering elastic least-squares reverse time migration
    Wang, Mingqian
    Zhang, Huixing
    He, Bingshou
    COMPUTERS & GEOSCIENCES, 2025, 196
  • [43] Mesh-free least-squares reverse-time migration
    Deng, Xiaofan
    Wu, Han
    Sun, Chengyu
    Gao, Rui
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2023, 20 (02) : 185 - 195
  • [44] Least-squares reverse time migration in visco-acoustic medium
    Li Zhen-Chun
    Guo Zhen-Bo
    Tian Kun
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2014, 57 (01): : 214 - 228
  • [45] Plane-wave least-squares reverse-time migration
    1600, Society of Exploration Geophysicists (78):
  • [46] Plane-wave least-squares reverse-time migration
    Dai, Wei
    Schuster, Gerard T.
    GEOPHYSICS, 2013, 78 (04) : S165 - S177
  • [47] Least-squares reverse-time migration with extended imaging condition
    Liu Yu-Jin
    Li Zhen-Chun
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2015, 58 (10): : 3771 - 3782
  • [48] Forward modelling formulas for least-squares reverse-time migration
    Yao, Gang
    da Silva, Nuno, V
    Wu, Di
    EXPLORATION GEOPHYSICS, 2018, 49 (04) : 506 - 518
  • [49] Elastic least-squares reverse time migration using the energy norm
    Rocha, Daniel
    Sava, Paul
    GEOPHYSICS, 2018, 83 (03) : S237 - S248
  • [50] Least-squares reverse time migration using convolutional neural networks
    Zhang, Wei
    Gao, Jinghuai
    Yang, Tao
    Jiang, Xiudi
    Sun, Wenbo
    GEOPHYSICS, 2021, 86 (06) : R959 - R971