Optimal Impulsive Control of Epidemic Spreading of Heterogeneous Malware

被引:12
|
作者
Taynitskiy, Vladislav [1 ]
Gubar, Elena [1 ]
Zhu, Quanyan [2 ]
机构
[1] St Petersburg State Univ, Fac Appl Math & Control Proc, Univ Prospekt 35, St Petersburg 198504, Russia
[2] NYU, Tandon Sch Engn, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
Impulse control; control system analysis; optimal control; SIR; epidemic process; MAXIMUM PRINCIPLE;
D O I
10.1016/j.ifacol.2017.08.2515
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the number of devices connected to the Internet is growing, the epidemics of malware spreading imposes a serious cyber security problem. It is common that there exist multiple types of malware infecting a network of devices. Periodically scheduled patching is a common way to protect the devices and thwart the malware spreading over a large population of devices. In this paper, we study the heterogeneous SIR model where two types of malware spread over the network and formulate an impulse optimal control problem to describe the optimal strategy of periodic patching that happens at discrete points of time. We obtain the structure of optimal impulse controls and consider the hybrid case in which we combine the discrete impulses and the continuous components of the control. Numerical simulations are used to corroborate the theoretical results. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:15038 / 15043
页数:6
相关论文
共 50 条
  • [1] Optimal Control of Nonlinear Competitive Epidemic Spreading Processes With Memory in Heterogeneous Networks
    You, Jin
    Li, Yan
    Cao, Xiangyang
    Zhao, Daduan
    Chen, Yangquan
    Zhang, Chenghui
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2025, 12 (01): : 96 - 109
  • [2] Optimal Security Policy for Protection Against Heterogeneous Malware
    Taynitskiy, Vladislav
    Gubar, Elena
    Zhu, Quanyan
    NETWORK GAMES, CONTROL, AND OPTIMIZATION, 2017, : 199 - 209
  • [3] Optimal control of epidemic spreading in the presence of social heterogeneity
    Dimarco, G.
    Toscani, G.
    Zanella, M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2224):
  • [4] Optimal Control Strategies for Virus Spreading in Inhomogeneous Epidemic Dynamics
    Shang, Yilun
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (03): : 621 - 629
  • [5] Optimal curing policy for epidemic spreading over a community network with heterogeneous population
    Ottaviano, Stefania
    De Pellegrini, Francesco
    Bonaccorsi, Stefano
    Van Mieghem, Piet
    JOURNAL OF COMPLEX NETWORKS, 2018, 6 (05) : 800 - 829
  • [6] Optimal Control of Malware Spreading Model with Tracing and Patching in Wireless Sensor Networks
    Senthilkumar Muthukrishnan
    Sumathi Muthukumar
    Veeramani Chinnadurai
    Wireless Personal Communications, 2021, 117 : 2061 - 2083
  • [7] Optimal Control of Malware Spreading Model with Tracing and Patching in Wireless Sensor Networks
    Muthukrishnan, Senthilkumar
    Muthukumar, Sumathi
    Chinnadurai, Veeramani
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 117 (03) : 2061 - 2083
  • [8] Hilfer-Katugampola fractional epidemic model for malware propagation with optimal control
    Ahmed, A. M. Sayed
    Ahmed, Hamdy M.
    Nofal, Taher A.
    Darwish, Adel
    Omar, Othman A. M.
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (10)
  • [9] The SAITS epidemic spreading model and its combinational optimal suppression control
    Ding, Wei
    Ding, Li
    Kong, Zhengmin
    Liu, Feng
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (02) : 3342 - 3354
  • [10] OPTIMAL CONTROL OF A DISCRETE TIME STOCHASTIC MODEL OF AN EPIDEMIC SPREADING IN ARBITRARY NETWORKS
    Angaroni, Fabrizio
    Damiani, Chiara
    Ramunni, Giulia
    Antoniotti, Marco
    PROCEEDINGS OF THE 2021 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'21), 2020,