A central limit theorem for a Markov-modulated infinite-server queue with batch Poisson arrivals and binomial catastrophes

被引:10
作者
Yajima, Moeko [1 ]
Tuan Phung-Duc [2 ]
机构
[1] Tokyo Inst Technol, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528552, Japan
[2] Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
关键词
Central limit theorem; Markov-modulated; Binomial catastrophes; Infinite-server queue; Batch arrival; M/M/1; QUEUE; M/G/INFINITY;
D O I
10.1016/j.peva.2018.10.002
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the stationary queue length distribution of a Markov-modulated M-X/M/infinity queue with binomial catastrophes. Binomial catastrophes occur according to a Poisson process, and each customer is removed with a probability and retained with the complementary probability upon the arrival of a binomial catastrophe. We focus on our model under a heavy traffic regime because its exact analysis is difficult if not impossible. We establish a central limit theorem for the stationary queue length of our model in the heavy traffic regime. The central limit theorem can be used to approximate the queue length distribution of our model with large arrival rates. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 14
页数:13
相关论文
共 27 条
[1]   A survey on wireless mesh networks [J].
Akyildiz, IF ;
Wang, XD .
IEEE COMMUNICATIONS MAGAZINE, 2005, 43 (09) :S23-S30
[2]   Stochastic decomposition in M/M/∞ queues with Markov modulated service rates [J].
Baykal-Gursoy, M ;
Xiao, WH .
QUEUEING SYSTEMS, 2004, 48 (1-2) :75-88
[3]  
Berman O.Kim., 1999, STOCH MODEL, V15, P695, DOI DOI 10.1080/15326349908807558
[4]   A large-deviations analysis of Markov-modulated infinite-server queues [J].
Blom, J. ;
Mandjes, M. .
OPERATIONS RESEARCH LETTERS, 2013, 41 (03) :220-225
[5]   ANALYSIS OF MARKOV-MODULATED INFINITE-SERVER QUEUES IN THE CENTRAL-LIMIT REGIME [J].
Blom, Joke ;
De Turck, Koen ;
Mandjes, Michel .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2015, 29 (03) :433-459
[6]  
BOGACHEV V. I., 2007, MEASURE THEORY, VI
[7]   BIRTH, IMMIGRATION AND CATASTROPHE PROCESSES [J].
BROCKWELL, PJ ;
GANI, J ;
RESNICK, SI .
ADVANCES IN APPLIED PROBABILITY, 1982, 14 (04) :709-731
[8]   ON THE NON-HOMOGENEOUS SERVICE SYSTEM MX/G/INFINITY [J].
CHATTERJEE, U ;
MUKHERJEE, SP .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1989, 38 (02) :202-207
[9]   The deviation matrix of a continuous-time Markov chain [J].
Coolen-Schrijner, P ;
van Doorn, EA .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2002, 16 (03) :351-366
[10]   On the M/M/1 queue with catastrophes and its continuous approximation [J].
Di Crescenzo, A ;
Giorno, V ;
Nobile, AG ;
Ricciardi, LM .
QUEUEING SYSTEMS, 2003, 43 (04) :329-347