Plasmon-polariton emission from a coherently p-excited quantum dot near a metal interface

被引:13
作者
Sanchez-Munoz, C. [1 ]
Gonzalez-Tudela, A. [1 ]
Tejedor, C. [1 ]
机构
[1] Univ Autonoma Madrid, E-28049 Madrid, Spain
关键词
D O I
10.1103/PhysRevB.85.125301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the emission of surface plasmon polaritons by the decay of the lowest excited state of a quantum emitter when the system is excited by a laser in resonance with a higher excited state ( p-shell excitation). By solving a master equation and by using the quantum-regression theorem, we show how the emission is enhanced by the Purcell effect due to the weak coupling between the emitter and the structured spectral density of plasmon-polariton states of a metal surface. Measurable magnitudes, as the spectrum and the second-order coherence function, are extremely affected by the coherent p-shell excitation. In many cases, such coherent excitation completely masks the physical features of the emission under study. The coexistence between coherent p-shell excitation in the first step of the process and weak coupling in the final step is very important and completely general for any structured reservoir of final states. The advantage of our system is that, just by changing the distance from the quantum emitter to the metal surface, one can access a very rich set of regimes as purely dissipative direct photon emission or emission of plasmon polaritons.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   Post-Selected Indistinguishable Photons from the Resonance Fluorescence of a Single Quantum Dot in a Microcavity [J].
Ates, S. ;
Ulrich, S. M. ;
Reitzenstein, S. ;
Loeffler, A. ;
Forchel, A. ;
Michler, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (16)
[3]  
Barnes WL, 1998, J MOD OPTIC, V45, P661, DOI 10.1080/09500349808230614
[4]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[5]  
BROWN RH, 1956, NATURE, V178, P1046
[6]   Luminescence spectra of quantum dots in microcavities. II. Fermions [J].
del Valle, Elena ;
Laussy, Fabrice P. ;
Tejedor, Carlos .
PHYSICAL REVIEW B, 2009, 79 (23)
[7]   Surface-plasmon circuitry [J].
Ebbesen, Thomas W. ;
Genet, Cyriaque ;
Bozhevolnyi, Sergey I. .
PHYSICS TODAY, 2008, 61 (05) :44-50
[8]   Simulating quantum interference in spontaneous decay near plasmonic nanostructures: Population dynamics [J].
Evangelou, Sofia ;
Yannopapas, Vassilios ;
Paspalakis, Emmanuel .
PHYSICAL REVIEW A, 2011, 83 (05)
[9]   Resonantly driven coherent oscillations in a solid-state quantum emitter [J].
Flagg, E. B. ;
Muller, A. ;
Robertson, J. W. ;
Founta, S. ;
Deppe, D. G. ;
Xiao, M. ;
Ma, W. ;
Salamo, G. J. ;
Shih, C. K. .
NATURE PHYSICS, 2009, 5 (03) :203-207
[10]   Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity [J].
Gallardo, E. ;
Martinez, L. J. ;
Nowak, A. K. ;
Sarkar, D. ;
van der Meulen, H. P. ;
Calleja, J. M. ;
Tejedor, C. ;
Prieto, I. ;
Granados, D. ;
Taboada, A. G. ;
Garcia, J. M. ;
Postigo, P. A. .
PHYSICAL REVIEW B, 2010, 81 (19)