Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries

被引:480
作者
Fan, Xinming [1 ]
Hu, Guorong [1 ]
Zhang, Bao [1 ]
Ou, Xing [1 ]
Zhang, Jiafeng [1 ]
Zhao, Wengao [2 ,3 ]
Jia, Haiping [4 ]
Zou, Lianfeng [5 ]
Li, Peng [2 ]
Yang, Yong [3 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[3] Xiamen Univ, Sch Energy Res, Xiamen 361005, Fujian, Peoples R China
[4] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
[5] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA
基金
中国国家自然科学基金;
关键词
Intergranular crack; Electrode/electrolyte interface; Single-crystalline NCM; Cycling capability; Thermal stability; HIGH-VOLTAGE PERFORMANCE; ENERGY-DENSITY CATHODE; ELECTROCHEMICAL PROPERTIES; SURFACE; TRANSITION; OXIDE; TEMPERATURE; STABILITY; LIFE;
D O I
10.1016/j.nanoen.2020.104450
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni-rich layered oxides are extensively employed as a promising cathode material in lithium ion batteries (LIBs) due to their high energy density and reasonable cost. However, the hierarchical structure of secondary particles with grain boundaries inevitably induces the structural collapse and severe electrode/electrolyte interface parasitic reactions as the intergranular crack arises from the anisotropic shrink and expansion. Herein, the single-crystalline LiNi0.83Co0.11Mn0.06O2 (SC-NCM) with primary particles of 3-6 mu m diameter is developed and comprehensively investigated, which exhibits superior cycling performance at both room temperature and elevated temperature (55 degrees C) as well as significantly improved structural integrity after long-term cycling. Remarkably, the SiO-C parallel to SC-NCM pouch-type full cell with a practical loading (8.7 mAh cm(-2)) delivers a capacity retention of 84.8 % at 45 degrees C after 600 cycles at a current rate of 1C (1C = 200 mA g(-1)), retaining a high specific energy density of 225 Wh/kg. Using a combination of X-ray photoelectron spectroscopy, time-of-flight secondary-ion mass spectrometry and scanning transmission electron microscopy, we reveal that SC-NCM particles with micron-sizes effectively mitigate the undesired electrode/electrolyte side interactions and prevent the generation of intergranular cracks, thereby alleviating irreversible structural degradation. The strategy of developing single-crystalline micron-sized particles may offer a new path for maintaining the structural stability and improving cycling life of Ni-rich layered NCM cathodes even under high temperature.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Pollard, Travis P. ;
Wang, Xuefeng ;
Lee, Jungwoo Z. ;
Zhang, Minghao ;
Wynn, Thomas ;
Ding, Michael ;
Borodin, Oleg ;
Meng, Ying Shirley ;
Xu, Kang .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :780-794
[2]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[3]   Synergistical Coupling Interconnected ZnS/SnS2 Nanoboxes with Polypyrrole-Derived N/S Dual-Doped Carbon for Boosting High-Performance Sodium Storage [J].
Cao, Liang ;
Zhang, Bao ;
Ou, Xing ;
Wang, Chunhui ;
Peng, Chunli ;
Zhang, Jiafeng .
SMALL, 2019, 15 (09)
[4]   Conductive Polymers Encapsulation To Enhance Electrochemical Performance of Ni-Rich Cathode Materials for Li-Ion Batteries [J].
Cao, Yanbing ;
Qi, Xianyue ;
Hu, Kaihua ;
Wang, Yong ;
Gan, Zhanggen ;
Li, Ying ;
Hu, Guorong ;
Peng, Zhongdong ;
Du, Ke .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (21) :18270-18280
[5]   The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material [J].
Chen, Tao ;
Li, Xiang ;
Wang, Hao ;
Yan, Xinxiu ;
Wang, Lei ;
Deng, Bangwei ;
Ge, Wujie ;
Qu, Meizhen .
JOURNAL OF POWER SOURCES, 2018, 374 :1-11
[6]   Phase Transformation Behavior and Stability of LiNiO2 Cathode Material for Li-Ion Batteries Obtained from InSitu Gas Analysis and Operando X-Ray Diffraction [J].
de Biasi, Lea ;
Schiele, Alexander ;
Roca-Ayats, Maria ;
Garcia, Grecia ;
Brezesinski, Torsten ;
Hartmann, Pascal ;
Janek, Juergen .
CHEMSUSCHEM, 2019, 12 (10) :2240-2250
[7]   Electrochemical Properties of the LiNi0.6Co0.2Mn0.2O2 Cathode Material Modified by Lithium Tungstate under High Voltage [J].
Fu, Jiale ;
Mu, Daobin ;
Wu, Borong ;
Bi, Jiaying ;
Cui, Hui ;
Yang, Hao ;
Wu, Hanfeng ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) :19704-19711
[8]   Electronically Conductive Sb-doped SnO2 Nanoparticles Coated LiNi0.8Co0.15Al0.05O2 Cathode Material with Enhanced Electrochemical Properties for Li-ion Batteries [J].
He, Xiaoshu ;
Du, Chunyu ;
Shen, Bin ;
Chen, Cheng ;
Xu, Xing ;
Wang, Yajing ;
Zuo, Pengjian ;
Ma, Yulin ;
Cheng, Xinqun ;
Yin, Geping .
ELECTROCHIMICA ACTA, 2017, 236 :273-279
[9]   A New High Power LiNi0.81Co0.1Al0.09O2 Cathode Material for Lithium-Ion Batteries [J].
Jo, Minki ;
Noh, Mijung ;
Oh, Pilgun ;
Kim, Youngsik ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2014, 4 (13)
[10]   Understanding the Effect of Local Short-Range Ordering on Lithium Diffusion in Li1.3Nb0.3Mn0.4O2 Single-Crystal Cathode [J].
Kan, Wang Hay ;
Deng, Biao ;
Xu, Yahong ;
Shukla, Alpesh Khushalchand ;
Bo, Tao ;
Zhang, Shuo ;
Liu, Jin ;
Pianetta, Piero ;
Wang, Bao-Tian ;
Liu, Yijin ;
Chen, Guoying .
CHEM, 2018, 4 (09) :2108-2123