Lattice Strain Limit for Uniform Shell Deposition in Zincblende CdSe/CdS Quantum Dots

被引:69
作者
Gong, Ke [1 ]
Kelley, David F. [1 ]
机构
[1] Univ Calif Merced, Chem & Chem Biol, Merced, CA 95343 USA
关键词
GE NANOCRYSTALS; SPECTROSCOPY; GROWTH; SHAPE; CORE;
D O I
10.1021/acs.jpclett.5b00566
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effects of lattice strain on the spectroscopy and photoluminescence quantum yields of zincblende CdSe/CdS core/shell quantum dots are examined. The quantum yields are measured as a function of core size and shell thickness. High quantum yields are achieved as long as the lattice strain energy density is below similar to 0.85 eV/nm(2), which is considerably greater than the limiting value of 0.59 eV/nm(2) for thermodynamic stability of a smooth, defect-free shell, as previously reported (J. Chem. Phys. 2014, 141, 194704). Thus, core/shell quantum dots having strain energy densities between 0.59 and 0.85 eV/nm(2) can have very high PL QYs but are metastable with respect to surface defect formation. Such metastable core/shell QDs can be produced by shell deposition at comparatively low temperatures (<140 degrees C). Annealing of these particles causes partial loss of core pressure and a red shift of the spectrum.
引用
收藏
页码:1559 / 1562
页数:4
相关论文
共 50 条
[41]   Surface modified glass substrate for sensing E. coli using highly stable and luminescent CdSe/CdS core shell quantum dots [J].
Ravikumar, Chandan Hunsur ;
Shwetharani, R. ;
Balakrishna, R. Geetha .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2020, 204
[42]   Effects of CdSe Layer Number on the Optical Properties and Microstructures of CdTe/CdSe (II) Core/Shell Quantum Dots [J].
Peng Jing ;
Fang Xiao-Ming ;
Chen Zhi-Hong ;
Zhang Zheng-Guo .
ACTA PHYSICO-CHIMICA SINICA, 2012, 28 (01) :232-238
[43]   Coulomb-blockade oscillation in CdS, ZnS and CdS/ZnS core-shell quantum dots [J].
Kalita, Pradip Kumar ;
Nanung, Yowa ;
Das, Hirendra .
PHYSICA SCRIPTA, 2023, 98 (02)
[44]   Low-temperature synthesis of tetrapod CdSe/CdS quantum dots through a microfluidic reactor [J].
Xing, Weishuo ;
Zhang, Shuang ;
An, Ruoting ;
Bi, Wengang ;
Geng, Chong ;
Xu, Shu .
NANOSCALE, 2021, 13 (46) :19474-19483
[45]   Circular Dichroism of Electric-Field-Oriented CdSe/CdS Quantum Dots-in-Rods [J].
Mukhina, Maria V. ;
Baimuratov, Anvar S. ;
Rukhlenko, Ivan D. ;
Maslov, Vladimir G. ;
Milton, Finn Purcell ;
Gun'ko, Yurii K. ;
Baranov, Alexander V. ;
Fedorov, Anatoly V. .
ACS NANO, 2016, 10 (09) :8904-8909
[46]   Platelet-in-Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@Shell Heteronanoplatelets [J].
Kelestemur, Yusuf ;
Guzelturk, Burak ;
Erdem, Onur ;
Olutas, Murat ;
Gungor, Kivanc ;
Demir, Hilmi Volkan .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (21) :3570-3579
[47]   Enhancement and tuning of optical properties of CdTe/CdS core/ shell quantum dots by tuning shell thickness [J].
Irani, E. ;
Yazdani, E. ;
Bayat, A. .
OPTIK, 2022, 249
[48]   Electronic coupling in colloidal quantum dot molecules; the case of CdSe/CdS core/shell homodimers [J].
Panfil, Yossef E. ;
Shamalia, Doaa ;
Cui, Jiabin ;
Koley, Somnath ;
Banin, Uri .
JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (22)
[49]   The interactions between CdSe quantum dots and yeast Saccharomyces cerevisiae: Adhesion of quantum dots to the cell surface and the protection effect of ZnS shell [J].
Mei, Jie ;
Yang, Li-Yun ;
Lai, Lu ;
Xu, Zi-Qiang ;
Wang, Can ;
Zhao, Jie ;
Jin, Jian-Cheng ;
Jiang, Feng-Lei ;
Liu, Yi .
CHEMOSPHERE, 2014, 112 :92-99
[50]   An Integrated, Multipart Experiment: Synthesis, Characterization, and Application of CdS and CdSe Quantum Dots as Sensitizers in Solar Cells [J].
Bauer, Christina A. ;
Hamada, Terianne Y. ;
Kim, Hyesoo ;
Johnson, Mathew R. ;
Voegtle, Matthew J. ;
Emrick, Matthew S. .
JOURNAL OF CHEMICAL EDUCATION, 2018, 95 (07) :1179-1186