Kinetic model for supercritical water gasification of algae

被引:107
作者
Guan, Qingqing [1 ,2 ]
Wei, Chaohai [2 ]
Savage, Phillip E. [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] S China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
BIOMASS GASIFICATION;
D O I
10.1039/c2cp23792j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The article reports the first quantitative kinetics model for supercritical water gasification (SCWG) of real biomass (algae) that describes the formation of the individual gaseous products. The phenomenological model is based on a set of reaction pathways that includes two types of compounds being intermediate between the algal biomass and the final gaseous products. To best correlate the experimental gas yields obtained at 450, 500 and 550 degrees C, the model allowed one type of intermediate to react to gases more quickly than the other type of intermediate. The model parameters indicate that gas yields increase with temperature because higher temperatures favor production of the more easily gasified intermediate and the production of gas at the expense of char. The model can accurately predict the qualitative influence of the biomass loading and water density on the gas yields. Sensitivity analysis and reaction rate analysis indicate that steam reforming of intermediates is an important source of H-2, whereas direct decomposition of the intermediate species is the main source of CO, CO2 and CH4.
引用
收藏
页码:3140 / 3147
页数:8
相关论文
共 15 条
[1]   Roles of water for chemical reactions in high-temperature water [J].
Akiya, N ;
Savage, PE .
CHEMICAL REVIEWS, 2002, 102 (08) :2725-2750
[2]   Evaluation of biomass gasification in supercritical water process for hydrogen production [J].
Calzavara, Y ;
Joussot-Dubien, C ;
Boissonnet, G ;
Sarrade, S .
ENERGY CONVERSION AND MANAGEMENT, 2005, 46 (04) :615-631
[3]   Catalytic hydrothermal gasification of biomass [J].
Elliott, Douglas C. .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2008, 2 (03) :254-265
[4]   Gasification of alga Nannochloropsis sp in supercritical water [J].
Guan, Qingqing ;
Savage, Phillip E. ;
Wei, Chaohai .
JOURNAL OF SUPERCRITICAL FLUIDS, 2012, 61 :139-145
[5]   The reduction and control technology of tar during biomass gasification/pyrolysis: An overview [J].
Han, Jun ;
Kim, Heejoon .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (02) :397-416
[6]   Supercritical water gasification [J].
Kruse, Andrea .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2008, 2 (05) :415-437
[7]  
MACEY R, 2008, BERKELEY MADONNA USE
[8]   Biomass gasification in near- and super-critical water: Status and prospects [J].
Matsumura, Y ;
Minowa, T ;
Potic, B ;
Kersten, SRA ;
Prins, W ;
van Swaaij, WPM ;
van de Beld, B ;
Elliott, DC ;
Neuenschwander, GG ;
Kruse, A ;
Antal, MJ .
BIOMASS & BIOENERGY, 2005, 29 (04) :269-292
[9]   Production of first and second generation biofuels: A comprehensive review [J].
Naik, S. N. ;
Goud, Vaibhav V. ;
Rout, Prasant K. ;
Dalai, Ajay K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :578-597
[10]   Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies [J].
Peterson, Andrew A. ;
Vogel, Frederic ;
Lachance, Russell P. ;
Froeling, Morgan ;
Antal, Michael J., Jr. ;
Tester, Jefferson W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :32-65