On the number of solutions of equations of Dickson polynomials over finite fields

被引:8
|
作者
Chou, Wun-Seng [1 ]
Mullen, Gary L. [2 ]
Wassermann, Bertram [2 ]
机构
[1] Acad Sinica, Inst Math, Taipei 115, Taiwan
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2008年 / 12卷 / 04期
关键词
finite field; Dickson polynomial; character; Gauss sum; trace;
D O I
10.11650/twjm/1500404986
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k, n(1), ... , n(k) be fixed positive integers, C-1, ... , C-k is an element of GF(q)*, and a(1), ... , a(k), c is an element of GF(q). We study the number of solutions in GF(q) of the equation c(1)D(n1) (x(1), a(1)) + C2Dn2 (x(2), a(2)) + ... + CkDnk (x(k), a(k)) = c, where each D-ni (x(i), a(i)), 1 <= i <= k, is the Dickson polynomial of degree n(i) with parameter ai. We also employ the results of the k = 1 case to recover the cardinality of preimages and images of Dickson polynomials obtained earlier by Chou, Gomez-Calderon and Mullen [1].
引用
收藏
页码:917 / 931
页数:15
相关论文
共 50 条