Microflow-mediated optical assembly of nanoparticles with femtogram protein via shrinkage of light-induced bubbles

被引:9
作者
Ueda, Mayu [1 ,2 ,3 ]
Nishimura, Yushi [4 ]
Tamura, Mamoru [1 ,3 ]
Ito, Syoji [5 ]
Tokonami, Shiho [2 ,3 ]
Iida, Takuya [1 ,3 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Sci, Dept Phys Sci, Sakai, Osaka 5998570, Japan
[2] Osaka Prefecture Univ, Grad Sch Engn, Dept Appl Chem, Sakai, Osaka 5998570, Japan
[3] Osaka Prefecture Univ, Res Inst Light induced Accelerat Syst, Sakai, Osaka 5998570, Japan
[4] Osaka City Univ, Grad Sch Sci, Div Mol Mat Sci, Sumiyoshi Ku, Osaka 5588585, Japan
[5] Osaka Univ, Grad Sch Engn Sci, Div Frontier Mat Sci, 1-3 Machikaneyama Cho, Toyonaka, Osaka 5608531, Japan
关键词
SODIUM DODECYL-SULFATE; GOLD NANOPARTICLES; DNA; QUANTIFICATION; GENERATION; ANTIBODY;
D O I
10.1063/1.5079306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Bottom-up processing of nanobiomaterials enables the creation of a variety of macroscopic structures in natural systems. Here, we use optical means to produce macroscopic-assembled structures of nanoparticles (NPs) from protein molecules by using light-induced bubble (LIB) generation under asymmetric pressure-driven flow in a microchannel. The broadband optical response of assembled NPs facilitates the application of photon pressure and photothermal convection when irradiated by using an infrared laser. The presence of a large amount of protein allows the generation of a vast number of stable LIBs from optically assembled metallic NP-fixed beads (MNFBs). In the case of more diluted albumin solutions, the shrinking of a single LIB can cause the aggregation of MNFBs via fg-level albumin (3.4 fg in the observation region), like a microscale bubblegum. The size of the resulting aggregate can be controlled by changing the concentration of protein. These findings can be used to devise production methods not only for broadband optical nanocomposites but also for label-free methods to detect an extremely small amount of protein. (C) 2019 Author(s).
引用
收藏
页数:6
相关论文
共 44 条
[21]  
Lida T, 2016, SCI REP, V6, P37768
[22]   Adding sodium dodecylsulfate to the running electrolyte enhances the separation of gold nanoparticles by capillary electrophoresis [J].
Liu, FK ;
Wei, GT .
ANALYTICA CHIMICA ACTA, 2004, 510 (01) :77-83
[23]   Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles [J].
Lukianova-Hleb, Ekaterina ;
Hu, Ying ;
Latterini, Loredana ;
Tarpani, Luigi ;
Lee, Seunghyun ;
Drezek, Rebekah A. ;
Hafner, Jason H. ;
Lapotko, Dmitri O. .
ACS NANO, 2010, 4 (04) :2109-2123
[24]   Femtonewton force spectroscopy of single extended DNA molecules [J].
Meiners, JC ;
Quake, SR .
PHYSICAL REVIEW LETTERS, 2000, 84 (21) :5014-5017
[25]   RETRACTED: A DNA-based method for rationally assembling nanoparticles into macroscopic materials (Retracted article. See vol. 671, 2023) [J].
Mirkin, CA ;
Letsinger, RL ;
Mucic, RC ;
Storhoff, JJ .
NATURE, 1996, 382 (6592) :607-609
[26]   Control of Submillimeter Phase Transition by Collective Photothermal Effect [J].
Nishimura, Yushi ;
Nishida, Keisuke ;
Yamamoto, Yojiro ;
Ito, Syoji ;
Tokonami, Shiho ;
Iida, Takuya .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (32) :18799-18804
[27]   The structural analysis of protein-protein interactions by NMR spectroscopy [J].
O'Connell, Mitchell R. ;
Gamsjaeger, Roland ;
Mackay, Joel P. .
PROTEOMICS, 2009, 9 (23) :5224-5232
[28]   Optical Trapping of a Single Protein [J].
Pang, Yuanjie ;
Gordon, Reuven .
NANO LETTERS, 2012, 12 (01) :402-406
[29]  
Rosoff M., 1996, Vesicles
[30]   Folding DNA to create nanoscale shapes and patterns [J].
Rothemund, PWK .
NATURE, 2006, 440 (7082) :297-302