CONVERGENCE ANALYSIS OF SOME TENT-BASED SCHEMES FOR LINEAR HYPERBOLIC SYSTEMS

被引:4
作者
Drake, Dow [1 ]
Gopalakrishnan, Jay [1 ]
Schoeberl, Joachim [2 ]
Wintersteiger, Christoph [2 ]
机构
[1] Portland State Univ, Fariborz Maseeh Dept Math & Stat, POB 751, Portland, OR 97207 USA
[2] Tech Univ Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
Spacetime; advancing front; tent pitching; causality; Friedrichs sys-tem; semidiscrete; stability; discontinuous Galerkin; Taylor timestepping; MTP scheme; SAT timestepping; DISCONTINUOUS GALERKIN METHOD; RUNGE-KUTTA SCHEMES;
D O I
10.1090/mcom/3686
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite element methods for symmetric linear hyperbolic systems using unstructured advancing fronts (satisfying a causality condition) are considered in this work. Convergence results and error bounds are obtained for mapped tent pitching schemes made with standard discontinuous Galerkin discretizations for spatial approximation on mapped tents. Techniques to study semidiscretization on mapped tents, design fully discrete schemes, prove local error bounds, prove stability on spacetime fronts, and bound error propagated through unstructured layers are developed.
引用
收藏
页码:699 / 733
页数:35
相关论文
共 23 条
[1]   A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance [J].
Abedi, R. ;
Petracovici, B. ;
Haber, R. B. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) :3247-3273
[2]  
Abedi R., 2018, ADV MODEL SIMUL ENG, V5
[3]   EXPLICIT RUNGE-KUTTA SCHEMES AND FINITE ELEMENTS WITH SYMMETRIC STABILIZATION FOR FIRST-ORDER LINEAR PDE SYSTEMS [J].
Burman, Erik ;
Ern, Alexandre ;
Fernandez, Miguel A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (06) :2019-2042
[4]  
Ciarlet P., 2002, Classics Appl. Math., V40, DOI DOI 10.1137/1.9780898719208
[5]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[6]  
Dafermos CM, 2010, GRUNDLEHR MATH WISS, V325, P1, DOI 10.1007/978-3-642-04048-1
[7]  
Despres B, 2004, MATH COMPUT, V73, P1203
[8]   Building spacetime meshes over arbitrary spatial domains [J].
Erickson, J ;
Guoy, D ;
Sullivan, JM ;
Üngör, A .
ENGINEERING WITH COMPUTERS, 2005, 20 (04) :342-353
[9]   Discontinuous Galerkin methods for Friedrichs' systems. I. General theory [J].
Ern, A. ;
Guermond, J. -L. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) :753-778
[10]   Explicit finite element methods for symmetric hyperbolic equations [J].
Falk, RS ;
Richter, GR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :935-952