Catalyst Acquisition by Data Science (CADS): a web-based catalyst informatics platform for discovering catalysts

被引:34
作者
Fujima, Jun [1 ,2 ]
Tanaka, Yuzuru [1 ]
Miyazato, Itsuki [1 ,2 ]
Takahashi, Lauren [1 ,2 ]
Takahashi, Keisuke [1 ,2 ]
机构
[1] Natl Inst Mat Sci NIMS, Ctr Mat Res Informat Integrat CMI2, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[2] Hokkaido Univ, Dept Chem, Sapporo, Hokkaido 0608510, Japan
基金
日本科学技术振兴机构;
关键词
Catalysts - Data Science - Websites - Visualization - Data visualization;
D O I
10.1039/d0re00098a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An innovative web-based integrated catalyst informatics platform, Catalyst Acquisition by Data Science (CADS), is developed for use towards the discovery and design of catalysts. The platform provides three main functionalities: a repository for data sharing and publishing, an analytic workspace for exploratory visual analysis, and catalyst property prediction tools with pretrained machine learning models. Access to such a platform helps decrease barriers to entry faced by researchers in catalytic chemistry when attempting to apply catalyst informatics towards data by providing analytical and visualization tools that can be simultaneously applied and easily accessed within a central space, thereby helping the advancement of catalyst informatics. The developed platform allows researchers to upload and collect data onto the platform and conduct data analysis using a system of linked workspaces consisting of interactive visualization tools and machine learning tools that simultaneously update according to the researchers' actions in real time. The platform also provides a space for collaboration where researchers can choose to publish their uploaded data and resulting analyses to the platform for collaborations with other users and groups. As an example, CADS is applied towards oxidative coupling of methane (OCM) data where use of the platform tools reveals underlying patterns and trends that are otherwise hidden within the original data. Thus, the proposed platform contributes towards the advancement of catalyst informatics for both specialists and non-specialists.
引用
收藏
页码:903 / 911
页数:9
相关论文
共 21 条
[1]   New cubic perovskites for one- and two-photon water splitting using the computational materials repository [J].
Castelli, Ivano E. ;
Landis, David D. ;
Thygesen, Kristian S. ;
Dahl, Soren ;
Chorkendorff, Ib ;
Jaramillo, Thomas F. ;
Jacobsen, Karsten W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :9034-9043
[2]   AFLOW: An automatic framework for high-throughput materials discovery [J].
Curtarolo, Stefano ;
Setyawan, Wahyu ;
Hart, Gus L. W. ;
Jahnatek, Michal ;
Chepulskii, Roman V. ;
Taylor, Richard H. ;
Wanga, Shidong ;
Xue, Junkai ;
Yang, Kesong ;
Levy, Ohad ;
Mehl, Michael J. ;
Stokes, Harold T. ;
Demchenko, Denis O. ;
Morgan, Dane .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 :218-226
[3]   The impact of multiple coordinated views on the visual data exploration and analysis [J].
da Silva Maciel, Michele de Paula ;
Meiguins, Bianchi Serique ;
de Moraes Lourenco, Rodrigo Augusto ;
Goncalves Meiguins, Aruanda Simoes ;
Alves Godinho, Paulo Igor .
PROCEEDINGS OF THE 12TH INTERNATIONAL INFORMATION VISUALISATION, 2008, :113-+
[4]   NOMAD: The FAIR concept for big data-driven materials science [J].
Draxl, Claudia ;
Scheffler, Matthias .
MRS BULLETIN, 2018, 43 (09) :676-682
[5]   The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals [J].
Haastrup, Sten ;
Strange, Mikkel ;
Pandey, Mohnish ;
Deilmann, Thorsten ;
Schmidt, Per S. ;
Hinsche, Nicki F. ;
Gjerding, Morten N. ;
Torelli, Daniele ;
Larsen, Peter M. ;
Riis-Jensen, Anders C. ;
Gath, Jakob ;
Jacobsen, Karsten W. ;
Mortensen, Jens Jorgen ;
Olsen, Thomas ;
Thygesen, Kristian S. .
2D MATERIALS, 2018, 5 (04)
[6]   CatApp: A Web Application for Surface Chemistry and Heterogeneous Catalysis [J].
Hummelshoj, Jens S. ;
Abild-Pedersen, Frank ;
Studt, Felix ;
Bligaard, Thomas ;
Norskov, Jens K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (01) :272-274
[7]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[8]   The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies [J].
Kirklin, Scott ;
Saal, James E. ;
Meredig, Bryce ;
Thompson, Alex ;
Doak, Jeff W. ;
Aykol, Muratahan ;
Ruehl, Stephan ;
Wolverton, Chris .
NPJ COMPUTATIONAL MATERIALS, 2015, 1
[9]   Machine Learning for Computational Heterogeneous Catalysis [J].
Lamoureux, Philomena Schlexer ;
Winther, Kirsten T. ;
Torres, Jose Antonio Garrido ;
Streibel, Verena ;
Zhao, Meng ;
Bajdich, Michal ;
Abild-Pedersen, Frank ;
Bligaard, Thomas .
CHEMCATCHEM, 2019, 11 (16) :3579-3599
[10]   Extracting Knowledge from Data through Catalysis Informatics [J].
Medford, Andrew J. ;
Kunz, M. Ross ;
Ewing, Sarah M. ;
Borders, Tammie ;
Fushimi, Rebecca .
ACS CATALYSIS, 2018, 8 (08) :7403-7429