Genetic structure of marine Borrelia garinii and population admixture with the terrestrial cycle of Lyme borreliosis

被引:45
作者
Gomez-Diaz, Elena [1 ,2 ]
Boulinier, Thierry [3 ]
Sertour, Natacha [4 ]
Cornet, Muriel [4 ]
Ferquel, Elisabeth [4 ]
Mccoy, Karen D. [1 ]
机构
[1] CNRS 5290 IRD 224 UM1 UM2, MIVEGEC, IRD, F-34394 Montpellier, France
[2] CSIC, UPF, Inst Evolutionary Biol, E-08003 Barcelona, Spain
[3] UMR CNRS 5175, Ctr Ecol Fonct & Evolut, F-34294 Montpellier, France
[4] Inst Pasteur, Ctr Natl Reference Borrelia, F-75724 Paris 15, France
关键词
BURGDORFERI SENSU-LATO; AMINO-ACID SITES; IXODES-URIAE; DISEASE BORRELIA; NORTH-ATLANTIC; TICK VECTOR; RECOMBINATION; PATHOGENS; DIVERSITY; EVOLUTION;
D O I
10.1111/j.1462-2920.2011.02515.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Despite the importance of population structure for the epidemiology of pathogenic bacteria, the spatial and ecological heterogeneity of these populations is often poorly characterized. Here, we investigated the genetic diversity and population structure of the Lyme borreliosis (LB) spirochaete Borrelia garinii in its marine cycle involving colonial seabirds and different host races of the seabird tick Ixodes uriae. Multilocus sequence analyses (MLSA) on eight chromosomal and two plasmid loci (ospA and ospC) indicate that B. garinii circulating in the marine system is highly diverse. Microevolution in marine B. garinii seems to be mainly clonal, but recombination and selection do occur. Sequence types were not evenly distributed among geographic regions, with substantial population subdivision between Atlantic and Pacific Ocean basins. However, no geographic structuring was evident within regions. Results of selection analyses and phylogenetic discordance between chromosomal and plasmid loci indicate adaptive evolution is likely occurring in this system, but no pattern of host or vector-associated divergence was found. Recombination analyses showed evidence for population admixture between terrestrial and marine strains, suggesting that LB spirochaetes are exchanged between these enzootic cycles. Importantly, our results highlight the need to explicitly consider the marine system for a complete understanding of the evolutionary ecology and global epidemiology of Lyme borreliosis.
引用
收藏
页码:2453 / 2467
页数:15
相关论文
共 42 条
[31]   Implications of life-history transitions on the population genetic structure of the toxigenic marine dinoflagellate Alexandrium tamarense [J].
Alpermann, Tilman J. ;
Beszteri, Bank ;
John, Uwe ;
Tillmann, Urban ;
Cembella, Allan D. .
MOLECULAR ECOLOGY, 2009, 18 (10) :2122-2133
[32]   Is the population genetic structure of complex life cycle parasites determined by the geographic range of the most motile host? [J].
Louhi, Katja-Riikka ;
Karvonen, Anssi ;
Rellstab, Christian ;
Jokela, Jukka .
INFECTION GENETICS AND EVOLUTION, 2010, 10 (08) :1271-1277
[33]   Population genetic structure of the striped silverside, Atherinomorus endrachtensis (Atherinidae, Atheriniformes, Teleostei), inhabiting marine lakes and adjacent lagoons in Palau: marine lakes are "Islands" for marine species [J].
Gotoh, Ryo O. ;
Chiba, Satoru N. ;
Goto, Tadasuke V. ;
Tamate, Hidetoshi B. ;
Hanzawa, Naoto .
GENES & GENETIC SYSTEMS, 2011, 86 (05) :325-337
[34]   Severely depleted genetic diversity and population structure of a large predatory marine fish (Lates japonicus) endemic to Japan [J].
Takahashi, Hiroshi ;
Takeshita, Naohiko ;
Tanoue, Hideaki ;
Ueda, Shusaku ;
Takeshima, Hirohiko ;
Komatsu, Teruhisa ;
Kinoshita, Izumi ;
Nishida, Mutsumi .
CONSERVATION GENETICS, 2015, 16 (05) :1155-1165
[35]   Complex patterns of genetic population structure in the mouthbrooding marine catfish, Bagre marinus, in the Gulf of Mexico and US Atlantic [J].
Portnoy, David S. ;
O'Leary, Shannon J. ;
Fields, Andrew T. ;
Hollenbeck, Christopher M. ;
Grubbs, R. Dean ;
Peterson, Cheston T. ;
Gardiner, Jayne M. ;
Adams, Douglas H. ;
Falterman, Brett ;
Drymon, J. Marcus ;
Higgs, Jeremy M. ;
Pulster, Erin L. ;
Wiley, Tonya R. ;
Murawski, Steven A. .
ECOLOGY AND EVOLUTION, 2024, 14 (06)
[36]   High levels of gene flow and low population genetic structure related to high dispersal potential of a tropical marine angiosperm [J].
Kornelis van Dijk, Jent ;
van Tussenbroek, Brigitta I. ;
Jimenez-Duran, Karina ;
Judith Marquez-Guzman, G. ;
Ouborg, Joop .
MARINE ECOLOGY PROGRESS SERIES, 2009, 390 :67-77
[37]   Linking DNA sequences to morphology: cryptic diversity and population genetic structure in the marine nematode Thoracostoma trachygaster (Nematoda, Leptosomatidae) [J].
Derycke, Sofie ;
De Ley, Paul ;
De Ley, Irma Tandingan ;
Holovachov, Oleksandr ;
Rigaux, Annelien ;
Moens, Tom .
ZOOLOGICA SCRIPTA, 2010, 39 (03) :276-289
[38]   Genetic structure of Orbicella faveolata population reveals high connectivity among a marine protected area and Varadero Reef in the Colombian Caribbean [J].
Alegria-Ortega, Angela ;
Jose Sanin-Perez, Maria ;
Irene Quan-Young, Lizette ;
Londono-Mesa, Mario H. .
AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS, 2021, 31 (04) :764-776
[39]   The population demography of Betula maximowicziana, a cool-temperate tree species in Japan, in relation to the last glacial period: its admixture-like genetic structure is the result of simple population splitting not admixing [J].
Tsuda, Y. ;
Nakao, K. ;
Ide, Y. ;
Tsumura, Y. .
MOLECULAR ECOLOGY, 2015, 24 (07) :1403-1418
[40]   Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche [J].
Stronen, Astrid V. ;
Navid, Erin L. ;
Quinn, Michael S. ;
Paquet, Paul C. ;
Bryan, Heather M. ;
Darimont, Christopher T. .
BMC ECOLOGY, 2014, 14