Drinfeld-Sokolov Hierarchies and Diagram Automorphisms of Affine Kac-Moody Algebras

被引:5
作者
Liu, Si-Qi [1 ]
Wu, Chao-Zhong [2 ]
Zhang, Youjin [1 ]
Zhou, Xu [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
INTEGRABLE HIERARCHIES; TAU-FUNCTIONS; KDV; SYMMETRIES; EQUATION;
D O I
10.1007/s00220-019-03568-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a diagram automorphism of an affine Kac-Moody algebra such that the folded diagram is still an affine Dynkin diagram, we show that the associated Drinfeld-Sokolov hierarchy also admits an induced automorphism. Then we show how to obtain the Drinfeld-Sokolov hierarchy associated to the affine Kac-Moody algebra that corresponds to the folded Dynkin diagram from the invariant sub-hierarchy of the original Drinfeld-Sokolov hierarchy.
引用
收藏
页码:785 / 832
页数:48
相关论文
共 21 条
  • [1] GENERALIZED DRINFELD-SOKOLOV HIERARCHIES .2. THE HAMILTONIAN STRUCTURES
    BURROUGHS, NJ
    DEGROOT, MF
    HOLLOWOOD, TJ
    MIRAMONTES, JL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (01) : 187 - 215
  • [2] Borodin-Okounkov formula, string equation and topological solutions of Drinfeld-Sokolov hierarchies
    Cafasso, Mattia
    Wu, Chao-Zhong
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (12) : 2681 - 2722
  • [3] GENERALIZED DRINFELD-SOKOLOV HIERARCHIES
    DEGROOT, MF
    HOLLOWOOD, TJ
    MIRAMONTES, JL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (01) : 57 - 84
  • [4] Drinfel'd V. G., CURRENT PROBLEMS MAT, V24, P81
  • [5] Dubrovin B., ARXIVMATH0108160
  • [6] Bihamiltonian Cohomologies and Integrable Hierarchies II: The Tau Structures
    Dubrovin, Boris
    Liu, Si-Qi
    Zhang, Youjin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 361 (02) : 467 - 524
  • [7] Equivalence of two approaches to integrable hierarchies of KdV type
    Enriquez, B
    Frenkel, E
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (01) : 211 - 230
  • [8] The Witten equation, mirror symmetry, and quantum singularity theory
    Fan, Huijun
    Jarvis, Tyler
    Ruan, Yongbin
    [J]. ANNALS OF MATHEMATICS, 2013, 178 (01) : 1 - 106
  • [9] GENERALIZED DRINFELD-SOKOLOV REDUCTIONS AND KDV TYPE HIERARCHIES
    FEHER, L
    HARNAD, J
    MARSHALL, I
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (01) : 181 - 214
  • [10] From Dynkin diagram symmetries to fixed point structures
    Fuchs, J
    Schellekens, B
    Schweigert, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (01) : 39 - 97