For a diagram automorphism of an affine Kac-Moody algebra such that the folded diagram is still an affine Dynkin diagram, we show that the associated Drinfeld-Sokolov hierarchy also admits an induced automorphism. Then we show how to obtain the Drinfeld-Sokolov hierarchy associated to the affine Kac-Moody algebra that corresponds to the folded Dynkin diagram from the invariant sub-hierarchy of the original Drinfeld-Sokolov hierarchy.
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Beijing Int Ctr Math Res, Beijing, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Fan, Huijun
论文数: 引用数:
h-index:
机构:
Jarvis, Tyler
Ruan, Yongbin
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Yangtz Ctr Math, Chengdu 610064, Peoples R China
Univ Michigan, Ann Arbor, MI 48109 USAPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Beijing Int Ctr Math Res, Beijing, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Fan, Huijun
论文数: 引用数:
h-index:
机构:
Jarvis, Tyler
Ruan, Yongbin
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Yangtz Ctr Math, Chengdu 610064, Peoples R China
Univ Michigan, Ann Arbor, MI 48109 USAPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China